Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
mSphere ; 7(5): e0027022, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36073800

ABSTRACT

Human rotavirus (HRV) is a major cause of childhood diarrhea in developing countries where widespread malnutrition contributes to the decreased oral vaccine efficacy and increased prevalence of other enteric infections, which are major concerns for global health. Neonatal gnotobiotic (Gn) piglets closely resemble human infants in their anatomy, physiology, and outbred status, providing a unique model to investigate malnutrition, supplementations, and HRV infection. To understand the molecular signatures associated with immune enhancement and reduced diarrheal severity by Escherichia coli Nissle 1917 (EcN) and tryptophan (TRP), immunological responses and global nontargeted metabolomics and lipidomics approaches were investigated on the plasma and fecal contents of malnourished pigs transplanted with human infant fecal microbiota and infected with virulent (Vir) HRV. Overall, EcN + TRP combined (rather than individual supplement action) promoted greater and balanced immunoregulatory/immunostimulatory responses associated with greater protection against HRV infection and disease in malnourished humanized piglets. Moreover, EcN + TRP treatment upregulated the production of several metabolites with immunoregulatory/immunostimulatory properties: amino acids (N-acetylserotonin, methylacetoacetyl-CoA), lipids (gamma-butyrobetaine, eicosanoids, cholesterol-sulfate, sphinganine/phytosphingosine, leukotriene), organic compound (biliverdin), benzenoids (gentisic acid, aminobenzoic acid), and nucleotides (hypoxathine/inosine/xanthine, cytidine-5'-monophosphate). Additionally, the levels of several proinflammatory metabolites of organic compounds (adenosylhomocysteine, phenylacetylglycine, urobilinogen/coproporphyrinogen) and amino acid (phenylalanine) were reduced following EcN + TRP treatment. These results suggest that the EcN + TRP effects on reducing HRV diarrhea in neonatal Gn pigs were at least in part due to altered metabolites, those involved in lipid, amino acid, benzenoids, organic compounds, and nucleotide metabolism. Identification of these important mechanisms of EcN/TRP prevention of HRV diarrhea provides novel targets for therapeutics development. IMPORTANCE Human rotavirus (HRV) is the most common cause of viral gastroenteritis in children, especially in developing countries, where the efficacy of oral HRV vaccines is reduced. Escherichia coli Nissle 1917 (EcN) is used to treat enteric infections and ulcerative colitis while tryptophan (TRP) is a biomarker of malnutrition, and its supplementation can alleviate intestinal inflammation and normalize intestinal microbiota in malnourished hosts. Supplementation of EcN + TRP to malnourished humanized gnotobiotic piglets enhanced immune responses and resulted in greater protection against HRV infection and diarrhea. Moreover, EcN + TRP supplementation increased the levels of immunoregulatory/immunostimulatory metabolites while decreasing the production of proinflammatory metabolites in plasma and fecal samples. Profiling of immunoregulatory and proinflammatory biomarkers associated with HRV perturbations will aid in the identification of treatments against HRV and other enteric diseases in malnourished children.


Subject(s)
Escherichia coli Infections , Fecal Microbiota Transplantation , Malnutrition , Rotavirus Infections , Tryptophan , Animals , Humans , Infant , Aminobenzoates , Biliverdine/metabolism , Cholesterol , Coenzyme A/metabolism , Coproporphyrinogens , Cytidine/metabolism , Diarrhea , Escherichia coli/metabolism , Germ-Free Life , Inosine/metabolism , Lipids , Malnutrition/therapy , Malnutrition/complications , Metabolome , Microbiota , Nucleotides/metabolism , Phenylalanine/metabolism , Rotavirus , Sulfates , Swine , Tryptophan/pharmacology , Urobilinogen/metabolism , Xanthines
2.
Probiotics Antimicrob Proteins ; 14(6): 1012-1028, 2022 12.
Article in English | MEDLINE | ID: mdl-34458959

ABSTRACT

Avian pathogenic E. coli (APEC), an extra-intestinal pathogenic E. coli (ExPEC), causes colibacillosis in poultry and is also a potential foodborne zoonotic pathogen. Currently, APEC infections in poultry are controlled by antibiotic medication; however, the emergence of multi-drug-resistant APEC strains and increased restrictions on the use of antibiotics in food-producing animals necessitate the development of new antibiotic alternative therapies. Here, we tested the anti-APEC activity of multiple commensal and probiotic bacteria in an agar-well diffusion assay and identified Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 producing strong zone of inhibition against APEC. In co-culture assay, L. rhamnosus GG and B. lactis Bb12 completely inhibited the APEC growth by 24 h. Further investigation revealed that antibacterial product(s) in the culture supernatants of L. rhamnosus GG and B. lactis Bb12 were responsible for the anti-APEC activity. The analysis of culture supernatants using LC-MS/MS identified multiple novel bioactive peptides (VQAAQAGDTKPIEV, AFDNTDTSLDSTFKSA, VTDTSGKAGTTKISNV, and AESSDTNLVNAKAA) in addition to the production of lactic acid. The oral administration (108 CFU/chicken) of L. rhamnosus GG significantly (P < 0.001) reduced the colonization (~ 1.6 logs) of APEC in the cecum of chickens. Cecal microbiota analysis revealed that L. rhamnosus GG moderated the APEC-induced alterations of the microbial community in the cecum of chickens. Further, L. rhamnosus GG decreased (P < 0.05) the abundance of phylum Proteobacteria, particularly those belonging to Enterobacteriaceae (Escherichia-Shigella) family. These studies indicate that L. rhamnosus GG is a promising probiotic to control APEC infections in chickens. Further studies are needed to optimize the delivery of L. rhamnosus GG in feed or water and in conditions simulating the field to facilitate its development for commercial applications.


Subject(s)
Bifidobacterium animalis , Escherichia coli Infections , Lacticaseibacillus rhamnosus , Poultry Diseases , Probiotics , Animals , Escherichia coli , Chickens , Chromatography, Liquid , Tandem Mass Spectrometry , Escherichia coli Infections/microbiology , Probiotics/pharmacology , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Poultry , Peptides/pharmacology
3.
Appl Opt ; 50(34): 6343-51, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22192985

ABSTRACT

In this paper quantitative imaging of biological cells using high-resolution full-field optical coherence microscopy (FF-OCM) is reported. The FF-OCM was realized using a swept-source system, a Mirau interferometer, and a CCD camera (a two-dimensional detection unit). A Mirau-interferometric objective lens was used to generate the interferometric signal. The signal was analyzed by a Fourier analysis technique. Optically sectioned amplitude images and a quantitative phase map of biological cells such as onion skin and red blood cells (RBCs) are demonstrated. Further, the refractive index profile of the RBCs is also presented. For the 50× Mirau objective, the experimentally achieved axial and transverse resolution of the present system are 3.8 and 1.2 µm, respectively. The CCD provides parallel detection and measures enface images without X, Y, Z mechanical scanning.


Subject(s)
Cells/ultrastructure , Interferometry/instrumentation , Microscopy, Interference/instrumentation , Algorithms , Equipment Design , Erythrocytes/ultrastructure , Fourier Analysis , Imaging, Three-Dimensional , Interferometry/methods , Microscopy, Interference/methods , Onions/ultrastructure , Refractometry
SELECTION OF CITATIONS
SEARCH DETAIL