Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Viruses ; 13(12)2021 12 04.
Article in English | MEDLINE | ID: mdl-34960706

ABSTRACT

Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.


Subject(s)
Antiviral Agents/pharmacology , Atovaquone/pharmacology , Berberine/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Alveolar Epithelial Cells , Animals , Berberine/chemistry , Cell Proliferation/drug effects , Chlorides/chemistry , Chlorides/pharmacology , Chlorocebus aethiops , Drug Synergism , Humans , Proguanil/pharmacology , Vero Cells , Virion/drug effects
2.
BMC Genomics ; 11: 183, 2010 Mar 17.
Article in English | MEDLINE | ID: mdl-20236518

ABSTRACT

BACKGROUND: Cellular membranes are crucial host components utilized by positive-strand RNA viruses for replication of their genomes. Published studies have suggested that the synthesis and distribution of membrane lipids are particularly important for the assembly and function of positive-strand RNA virus replication complexes. However, the impact of specific lipid metabolism pathways in this process have not been well defined, nor have potential changes in lipid expression associated with positive-strand RNA virus replication been examined in detail. RESULTS: In this study we used parallel and complementary global and targeted approaches to examine the impact of lipid metabolism on the replication of the well-studied model alphanodavirus Flock House virus (FHV). We found that FHV RNA replication in cultured Drosophila S2 cells stimulated the transcriptional upregulation of several lipid metabolism genes, and was also associated with increased phosphatidylcholine accumulation with preferential increases in lipid molecules with longer and unsaturated acyl chains. Furthermore, targeted RNA interference-mediated downregulation of candidate glycerophospholipid metabolism genes revealed a functional role of several genes in virus replication. In particular, we found that downregulation of Cct1 or Cct2, which encode essential enzymes for phosphatidylcholine biosynthesis, suppressed FHV RNA replication. CONCLUSION: These results indicate that glycerophospholipid metabolism, and in particular phosphatidylcholine biosynthesis, plays an important role in FHV RNA replication. Furthermore, they provide a framework in which to further explore the impact of specific steps in lipid metabolism on FHV replication, and potentially identify novel cellular targets for the development of drugs to inhibit positive-strand RNA viruses.


Subject(s)
Drosophila/genetics , Glycerophospholipids/metabolism , Insect Viruses/genetics , RNA Viruses/genetics , RNA, Viral/biosynthesis , Virus Replication , Animals , Cells, Cultured , Choline-Phosphate Cytidylyltransferase/genetics , Choline-Phosphate Cytidylyltransferase/metabolism , Drosophila/metabolism , Drosophila/virology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Genes, Insect , Genome, Viral , Insect Viruses/physiology , Lipid Metabolism , Oligonucleotide Array Sequence Analysis , Phosphatidylcholines/biosynthesis , RNA Interference , RNA Viruses/physiology , RNA, Double-Stranded/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL