Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474449

ABSTRACT

In this work, a novel sustainable approach was proposed for the integral valorisation of Arctium lappa (burdock) seeds and roots. Firstly, a preliminary recovery of bioactive compounds, including unsaturated fatty acids, was performed. Then, simple sugars (i.e., fructose and sucrose) and phenolic compounds were extracted by using compressed fluids (supercritical CO2 and propane). Consequently, a complete characterisation of raw biomass and extraction residues was carried out to determine the starting chemical composition in terms of residual lipids, proteins, hemicellulose, cellulose, lignin, and ash content. Subsequently, three alternative ways to utilise extraction residues were proposed and successfully tested: (i) enzymatic hydrolysis operated by Cellulases (Thricoderma resei) of raw and residual biomass to glucose, (ii) direct ethanolysis to produce ethyl levulinate; and (iii) pyrolysis to obtain biochar to be used as supports for the synthesis of sulfonated magnetic iron-carbon catalysts (Fe-SMCC) to be applied in the dehydration of fructose for the synthesis of 5-hydroxymethylfurfural (5-HMF). The development of these advanced approaches enabled the full utilisation of this resource through the production of fine chemicals and value-added compounds in line with the principles of the circular economy.


Subject(s)
Arctium , Arctium/chemistry , Lignin/chemistry , Plant Extracts/chemistry , Cellulose , Fructose
2.
Molecules ; 26(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885901

ABSTRACT

In this study, sustainable technology microwave-assisted extraction (MAE) in association with green solvents was applied to recover phenolic compounds from spent coffee grounds (SCGs). A design of experiments (DOE) was used for process optimization. Initially, a 24-1 two level Fractional Factorial Design was used and ratios "solvent to solute" and "ethanol to water" were identified as the significant experimental factors. Consequently, Central Composite Design (CCD) was applied to analyze the effects of the significant variables on the response yield, total polyphenols content (TPC), and antioxidant activity (AA) by the DPPH assay method, and quadratic surfaces to optimize those responses were generated. The values of the significant factors of 16.7 (solvent/solute) and 68.9% (ethanol/water) were optimized simultaneously the yield (%) at 6.98 ± 0.27, TPC (mg GAE/g) at 117.7 ± 6.1, and AA (µmol TE/g) at 143.8 ± 8.6 and were in excellent agreement with those predicted from the CCD model. The variations of the compositions of the lipids, caffeine, pentacyclic diterpenes, and FAME as a function of the dominant factor % ethanol in the solvent mixture were analyzed by applying NMR and GC-FID, and the results obtained confirmed their determinative significance.


Subject(s)
Coffea/chemistry , Phenols/isolation & purification , Plant Extracts/isolation & purification , Microwaves , Phenols/analysis , Plant Extracts/analysis , Seeds/chemistry , Solvents
3.
J Sci Food Agric ; 95(14): 2901-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25445203

ABSTRACT

BACKGROUND: Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol found in thyme essential oil. This compound has revealed several biological properties, including antibacterial, anti-inflammatory and antioxidant activities. In this work, a comparison was made between the performance of different green solvents (ethanol, limonene and ethyl lactate), by pressurized liquid extraction (PLE) and supercritical fluid extraction (SFE) at different conditions, to extract thymol from three different varieties of thyme (Thymus vulgaris, Thymus zygis and Thymus citriodorus). Additionally, new solubility data of thymol in limonene and ethanol at ambient pressure and temperatures in the range 30-43 °C are reported. RESULTS: The highest thymol recoveries were attained with T. vulgaris (7-11 mg g(-1)). No thymol could be quantified in the PLE samples of T. citriodorus. The highest concentrations of thymol in the extracts were obtained with limonene. Thymol is very soluble in both solvents, particularly in ethanol (∼900 mg g(-1) at ∼40 °C), and is the main compound (in terms of peak area) present in the essential oil extracts obtained. CONCLUSION: The three solvents show good capacity to extract thymol from T. vulgaris and T. zygis by PLE. Although PLE proved to be a suitable technology to extract thymol from thyme plants, the highest concentrations of thymol were obtained by SFE with supercritical CO2 .


Subject(s)
Cyclohexenes/chemistry , Ethanol/chemistry , Lactates/chemistry , Oils, Volatile/chemistry , Solvents/chemistry , Terpenes/chemistry , Thymol/isolation & purification , Thymus Plant/chemistry , Chromatography, Supercritical Fluid , Limonene , Plant Extracts/chemistry , Pressure , Solubility , Species Specificity , Thymol/chemistry , Thymus Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL