Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Nutr Biochem ; 99: 108839, 2022 01.
Article in English | MEDLINE | ID: mdl-34411715

ABSTRACT

Omega-3 or n-3 polyunsaturated fatty acids (PUFAs) are widely studied for health benefits that may relate to anti-inflammatory activity. However, mechanisms mediating an anti-inflammatory response to n-3 PUFA intake are not fully understood. Of interest is the emerging role of fatty acids to impact DNA methylation (DNAm) and thereby modulate mediating inflammatory processes. In this pilot study, we investigated the impact of n-3 PUFA intake on DNAm in inflammation-related signaling pathways in peripheral blood mononuclear cells (PBMCs) of women at high risk of breast cancer. PBMCs of women at high risk of breast cancer (n=10) were obtained at baseline and after 6 months of n-3 PUFA (5 g/d EPA+DHA dose arm) intake in a previously reported dose finding trial. DNA methylation of PBMCs was assayed by reduced representation bisulfite sequencing (RRBS) to obtain genome-wide methylation profiles at the single nucleotide level. We examined the impact of n-3 PUFA on genome-wide DNAm and focused upon a set of candidate genes associated with inflammation signaling pathways and breast cancer. We identified 24,842 differentially methylated CpGs (DMCs) in gene promoters of 5507 genes showing significant enrichment for hypermethylation in both the candidate gene and genome-wide analyses. Pathway analysis identified significantly hypermethylated signaling networks after n-3 PUFA treatment, such as the Toll-like Receptor inflammatory pathway. The DNAm pattern in individuals and the response to n-3 PUFA intake are heterogeneous. PBMC DNAm profiling suggests a mechanism whereby n-3 PUFAs may impact inflammatory cascades associated with disease processes including carcinogenesis.


Subject(s)
Anti-Inflammatory Agents/metabolism , Breast Neoplasms/genetics , DNA Methylation , Fatty Acids, Omega-3/metabolism , Leukocytes, Mononuclear/metabolism , Adult , Breast Neoplasms/metabolism , Breast Neoplasms/prevention & control , CpG Islands , Dietary Supplements/analysis , Female , Humans , Leukocytes, Mononuclear/chemistry , Middle Aged , Pilot Projects , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
2.
J Vis Exp ; (160)2020 06 07.
Article in English | MEDLINE | ID: mdl-32568247

ABSTRACT

Metastatic spread of cancer is an unfortunate consequence of disease progression, aggressive cancer subtypes, and/or late diagnosis. Brain metastases are particularly devastating, difficult to treat, and confer a poor prognosis. While the precise incidence of brain metastases in the United States remains hard to estimate, it is likely to increase as extracranial therapies continue to become more efficacious in treating cancer. Thus, it is necessary to identify and develop novel therapeutic approaches to treat metastasis at this site. To this end, intracranial injection of cancer cells has become a well-established method in which to model brain metastasis. Previously, the inability to directly measure tumor growth has been a technical hindrance to this model; however, increasing availability and quality of small animal imaging modalities, such as magnetic resonance imaging (MRI), are vastly improving the ability to monitor tumor growth over time and infer changes within the brain during the experimental period. Herein, intracranial injection of murine mammary tumor cells into immunocompetent mice followed by MRI is demonstrated. The presented injection approach utilizes isoflurane anesthesia and a stereotactic setup with a digitally controlled, automated drill and needle injection to enhance precision, and reduce technical error. MRI is measured over time using a 9.4 Tesla instrument in The Ohio State University James Comprehensive Cancer Center Small Animal Imaging Shared Resource. Tumor volume measurements are demonstrated at each time point through use of ImageJ. Overall, this intracranial injection approach allows for precise injection, day-to-day monitoring, and accurate tumor volume measurements, which combined greatly enhance the utility of this model system to test novel hypotheses on the drivers of brain metastases.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Injections , Magnetic Resonance Imaging , Anesthesia , Animals , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Breast Neoplasms/pathology , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Stereotaxic Techniques , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL