Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Biol Chem ; 299(1): 102780, 2023 01.
Article in English | MEDLINE | ID: mdl-36496071

ABSTRACT

Ischemia and reperfusion affect multiple elements of cardiomyocyte electrophysiology, especially within the mitochondria. We previously showed that in cardiac monolayers, upon reperfusion after coverslip-induced ischemia, mitochondrial inner membrane potential (ΔΨ) unstably oscillates between polarized and depolarized states, and ΔΨ instability corresponds with arrhythmias. Here, through confocal microscopy of compartment-specific molecular probes, we investigate the mechanisms underlying the postischemic ΔΨ oscillations, focusing on the role of Ca2+ and oxidative stress. During reperfusion, transient ΔΨ depolarizations occurred concurrently with periods of increased mitochondrial oxidative stress (5.07 ± 1.71 oscillations/15 min, N = 100). Supplementing the antioxidant system with GSH monoethyl ester suppressed ΔΨ oscillations (1.84 ± 1.07 oscillations/15 min, N = 119, t test p = 0.027) with 37% of mitochondrial clusters showing no ΔΨ oscillations (versus 4% in control, odds ratio = 14.08, Fisher's exact test p < 0.001). We found that limiting the production of reactive oxygen species using cyanide inhibited postischemic ΔΨ oscillations (N = 15, t test p < 10-5). Furthermore, ΔΨ oscillations were not associated with any discernable pattern in cell-wide oxidative stress or with the changes in cytosolic or mitochondrial Ca2+. Sustained ΔΨ depolarization followed cytosolic and mitochondrial Ca2+ increase and was associated with increased cell-wide oxidative stress. Collectively, these findings suggest that transient bouts of increased mitochondrial oxidative stress underlie postischemic ΔΨ oscillations, regardless of Ca2+ dynamics.


Subject(s)
Mitochondria, Heart , Oxidative Stress , Humans , Calcium/metabolism , Ischemia/metabolism , Membrane Potential, Mitochondrial , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Reperfusion
2.
Circ Res ; 116(4): 572-86, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25499773

ABSTRACT

RATIONALE: Despite 4 decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. OBJECTIVE: To develop a multicenter, randomized, controlled, clinical trial-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. METHODS AND RESULTS: With support from the National Heart, Lung, and Blood Institute, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning to reduce infarct size in 3 species (at 2 sites/species): mice (n=22-25 per group), rabbits (n=11-12 per group), and pigs (n=13 per group). During this validation phase, (1) we established protocols that gave similar results between centers and confirmed that ischemic preconditioning significantly reduced infarct size in all species and (2) we successfully established a multicenter structure to support CAESAR's operations, including 2 surgical centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center-all with the oversight of an external Protocol Review and Monitoring Committee. CONCLUSIONS: CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter, randomized, controlled clinical trials. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols ("CAESAR protocols") for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible.


Subject(s)
Cardiovascular Agents/pharmacology , Drug Evaluation, Preclinical , Ischemic Preconditioning, Myocardial/methods , Myocardial Infarction/prevention & control , National Heart, Lung, and Blood Institute (U.S.) , Research Design , Animals , Biomarkers/blood , Cooperative Behavior , Disease Models, Animal , Drug Evaluation, Preclinical/standards , Female , Guidelines as Topic , Humans , Ischemic Preconditioning, Myocardial/standards , Male , Mice , Myocardial Infarction/blood , Myocardial Infarction/pathology , Myocardium/pathology , Predictive Value of Tests , Rabbits , Reproducibility of Results , Research Design/standards , Species Specificity , Swine , Time Factors , Troponin I/blood , United States
SELECTION OF CITATIONS
SEARCH DETAIL