Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073402

ABSTRACT

The development of scaffolds mimicking the extracellular matrix containing bioactive substances has great potential in tissue engineering and wound healing applications. This study investigates melatonin-a methoxyindole present in almost all biological systems. Melatonin is a bioregulator in terms of its potential clinical importance for future therapies of cutaneous diseases. Mammalian skin is not only a prominent melatonin target, but also produces and rapidly metabolizes the multifunctional methoxyindole to biologically active metabolites. In our methodology, chitosan/collagen (CTS/Coll)-contained biomaterials are blended with melatonin at different doses to fabricate biomimetic hybrid scaffolds. We use rat tail tendon- and Salmo salar fish skin-derived collagens to assess biophysical and cellular properties by (i) Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), (ii) thermogravimetric analysis (TG), (iii) scanning electron microscope (SEM), and (iv) proliferation ratio of cutaneous cells in vitro. Our results indicate that melatonin itself does not negatively affect biophysical properties of melatonin-immobilized hybrid scaffolds, but it induces a pronounced elevation of cell viability within human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF), and reference melanoma cells. These results demonstrate that this indoleamine accelerates re-epithelialization. This delivery is a promising technique for additional explorations in future dermatotherapy and protective skin medicine.


Subject(s)
Bandages , Chitosan/chemistry , Collagen/chemistry , Dermis/metabolism , Epidermis/metabolism , Fibroblasts/metabolism , Keratinocytes/metabolism , Melatonin , Cell Line , Dermis/pathology , Drug Evaluation, Preclinical , Epidermis/pathology , Fibroblasts/pathology , Humans , Keratinocytes/pathology , Melatonin/chemistry , Melatonin/pharmacokinetics , Melatonin/pharmacology
2.
J Pineal Res ; 70(3): e12728, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33650175

ABSTRACT

Melanoma is a leading cause of cancer deaths worldwide. Although immunotherapy has revolutionized the treatment for some patients, resistance towards therapy and unwanted side effects remain a problem for numerous individuals. Broad anti-cancer activities of melatonin are recognized; however, additional investigations still need to be elucidated. Herein, using various human melanoma cell models, we explore in vitro the new insights into the regulation of melanoma by melatonin and its metabolites which possess, on the other side, high safety profiles and biological meaningful. In this study, using melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines, the comparative oncostatic responses, the impact on melanin content (for melanotic MNT-1 melanoma cells) as well as the mitochondrial function controlled by melatonin, its precursor (serotonin), a kynuric (N1 -acetyl-N2 -formyl-5-methoxykynuramine, AFMK) and indolic pathway (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) metabolites were assessed. Namely, significant disturbances were observed in bioenergetics as follows: (i) uncoupling of oxidative phosphorylation (OXPHOS), (ii) attenuation of glycolysis, (iii) dissipation of mitochondrial transmembrane potential (mtΔΨ) accompanied by (iv) massive generation of reactive oxygen species (ROS), and (v) decrease of glucose uptake. Collectively, these results together with previously published reports provide a new biological potential and make an imperative to consider using melatonin or its metabolites for complementary future treatments of melanoma-affected patients; however, these associations should be additionally investigated in clinical setting.


Subject(s)
Antineoplastic Agents/pharmacology , Energy Metabolism/drug effects , Melanoma/drug therapy , Melatonin/pharmacology , Mitochondria/drug effects , Skin Neoplasms/drug therapy , Antineoplastic Agents/metabolism , Biotransformation , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Melanoma/metabolism , Melanoma/pathology , Melatonin/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Oxidative Stress/drug effects , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
3.
Nutrients ; 12(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847033

ABSTRACT

The recent pandemic of COVID-19 has already infected millions of individuals and has resulted in the death of hundreds of thousands worldwide. Based on clinical features, pathology, and the pathogenesis of respiratory disorders induced by this and other highly homogenous coronaviruses, the evidence suggests that excessive inflammation, oxidation, and an exaggerated immune response contribute to COVID-19 pathology; these are caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This leads to a cytokine storm and subsequent progression triggering acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), and often death. We and others have reported melatonin to be an anti-inflammatory and anti-oxidative molecule with a high safety profile. It is effective in critical care patients by reducing their vascular permeability and anxiety, inducing sedation, and improving their quality of sleep. As melatonin shows no harmful adverse effects in humans, it is imperative to introduce this indoleamine into clinical trials where it might be beneficial for better clinical outcomes as an adjuvant treatment of COVID-19-infected patients. Herein, we strongly encourage health care professionals to test the potential of melatonin for targeting the COVID-19 pandemic. This is urgent, since there is no reliable treatment for this devastating disease.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Drug Repositioning , Melatonin/therapeutic use , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , COVID-19 Drug Treatment
4.
J Invest Dermatol ; 140(12): 2371-2379, 2020 12.
Article in English | MEDLINE | ID: mdl-32335129

ABSTRACT

Targeting neuroendocrine receptors can be considered as another interesting approach to treating fibrotic disorders. Previously, we could demonstrate that tropisetron, a classical serotonin receptor blocker, can modulate collagen synthesis and acts in vitro through the α7 nicotinic acetylcholine receptor (α7nAchR). Here, we used a pharmacologic approach with specific α7nAchR agonists to validate this hypothesis. PHA-543613, an α7nAchR-specific agonist, not only prevented but also reversed established skin fibrosis of mice injected with bleomycin. Interestingly, agonistic stimulation of α7nAchR also attenuated experimental skin fibrosis in the non-inflammation driven adenovirus coding for TGFß receptor Iact mouse model, indicating fibroblast-mediated and not only anti-inflammatory effects of such agents. The fibroblast-mediated effects were confirmed in vitro using human dermal fibroblasts, in which the α7nAchR-specific agonists strongly reduced the impact of TGFß1-mediated expression on collagen and myofibroblast marker expression. These actions were linked to modulation of the redox-sensitive transcription factor JunB and impairment of the mitochondrial respiratory system. Our results indicate that pharmacologic stimulation of the α7nAchR could be a promising target for treatment of patients with skin fibrotic diseases. Moreover, our results suggest a mechanistic axis of collagen synthesis regulation through the mitochondrial respiratory system.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Quinuclidines/pharmacology , Scleroderma, Systemic/drug therapy , Skin/pathology , alpha7 Nicotinic Acetylcholine Receptor/agonists , Adenoviridae/genetics , Animals , Bleomycin/toxicity , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cells, Cultured , Collagen/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Male , Mice , Primary Cell Culture , Quinuclidines/therapeutic use , Receptor, Transforming Growth Factor-beta Type I/genetics , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Skin/cytology , Skin/drug effects , alpha7 Nicotinic Acetylcholine Receptor/metabolism
5.
J Allergy Clin Immunol ; 131(5): 1384-92.e6, 2013 May.
Article in English | MEDLINE | ID: mdl-23246018

ABSTRACT

BACKGROUND: IgE- and T-cell cross-reactivity contribute to the birch pollen-food syndrome. OBJECTIVES: We performed a comprehensive analysis of T-cell cross-reactivity in primary cell cultures, facilitating the identification of allergen-specific T-cell subpopulations from individual patients. METHODS: Patients with birch pollen allergy and associated food allergy to hazelnuts, carrots, or both were analyzed for IgE cross-reactivity, T-cell responses, and T-cell cross-reactivity to recombinant Bet v 1.0101 (Bet v 1; birch), Cor a 1.0401 (Cor a 1; hazelnut), and Dau c 1.0104 (Dau c 1; carrot). A novel flow cytometry-based method using a 2-step staining process with fluorescent dyes was established to identify subpopulations of cross-reactive T cells. RESULTS: IgE-binding inhibition tests of individual sera revealed that the vast majority of Cor a 1-reactive IgE was cross-reactive to Bet v 1, whereas Bet v 1-reactive IgE was only partially inhibited by preincubation with Cor a 1. Primary stimulation of T cells with Bet v 1 or Cor a 1 resulted in a significant increase in specific responses to Cor a 1 or Bet v 1 after secondary stimulation, respectively, indicating T-cell cross-reactivity between birch and hazelnut allergens in all patients of the study cohort. Preactivation with Dau c 1 induced less pronounced effects. A novel flow cytometry-based proliferation assay identified a predominant Cor a 1/Bet v 1-cross-reactive T-cell subpopulation within highly Bet v 1/Cor a 1-responsive T cells. CONCLUSION: Analysis of primary allergen-specific T cells combined with flow cytometry-based proliferation assays facilitates investigation of allergen-specific T-cell subpopulations in subjects and might be helpful to evaluate the effect of birch-specific immunotherapy on pollen-associated food allergies.


Subject(s)
Betula/immunology , Corylus/immunology , Food Hypersensitivity/etiology , Food Hypersensitivity/immunology , Immunoglobulin E/metabolism , Plant Proteins/adverse effects , Plant Proteins/immunology , T-Lymphocyte Subsets/immunology , Adult , Allergens/adverse effects , Allergens/immunology , Antigens, Plant/adverse effects , Antigens, Plant/immunology , Antigens, Plant/metabolism , Betula/adverse effects , Case-Control Studies , Cells, Cultured , Corylus/adverse effects , Cross Reactions , Daucus carota/adverse effects , Daucus carota/immunology , Female , Humans , Male , Middle Aged , Plant Proteins/metabolism , Pollen/adverse effects , Pollen/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL