Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
mBio ; 14(3): e0253522, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37067422

ABSTRACT

Genome-scale analyses have revealed many transcription factor binding sites within, rather than upstream of, genes, raising questions as to the function of these binding sites. Here, we use complementary approaches to map the regulon of the Escherichia coli transcription factor PhoB, a response regulator that controls transcription of genes involved in phosphate homeostasis. Strikingly, the majority of PhoB binding sites are located within genes, but these intragenic sites are not associated with detectable transcription regulation and are not evolutionarily conserved. Many intragenic PhoB sites are located in regions bound by H-NS, likely due to shared sequence preferences of PhoB and H-NS. However, these PhoB binding sites are not associated with transcription regulation even in the absence of H-NS. We propose that for many transcription factors, including PhoB, binding sites not associated with promoter sequences are transcriptionally inert and hence are tolerated as genomic "noise." IMPORTANCE Recent studies have revealed large numbers of transcription factor binding sites within the genes of bacteria. The function, if any, of the vast majority of these binding sites has not been investigated. Here, we map the binding of the transcription factor PhoB across the Escherichia coli genome, revealing that the majority of PhoB binding sites are within genes. We show that PhoB binding sites within genes are not associated with regulation of the overlapping genes. Indeed, our data suggest that bacteria tolerate the presence of large numbers of nonregulatory, intragenic binding sites for transcription factors and that these binding sites are not under selective pressure.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Regulon , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Transcription Factors/genetics , Transcription Factors/metabolism , Binding Sites , Phosphates/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
2.
J Bacteriol ; 204(1): JB0035221, 2021 01 01.
Article in English | MEDLINE | ID: mdl-34662240

ABSTRACT

Small proteins of <51 amino acids are abundant across all domains of life but are often overlooked because their small size makes them difficult to predict computationally, and they are refractory to standard proteomic approaches. Ribosome profiling has been used to infer the existence of small proteins by detecting the translation of the corresponding open reading frames (ORFs). Detection of translated short ORFs by ribosome profiling can be improved by treating cells with drugs that stall ribosomes at specific codons. Here, we combine the analysis of ribosome profiling data for Escherichia coli cells treated with antibiotics that stall ribosomes at either start or stop codons. Thus, we identify ribosome-occupied start and stop codons with high sensitivity for ∼400 novel putative ORFs. The newly discovered ORFs are mostly short, with 365 encoding proteins of <51 amino acids. We validate translation of several selected short ORFs, and show that many likely encode unstable proteins. Moreover, we present evidence that most of the newly identified short ORFs are not under purifying selection, suggesting they do not impact cell fitness, although a small subset have the hallmarks of functional ORFs. IMPORTANCE Small proteins of <51 amino acids are abundant across all domains of life but are often overlooked because their small size makes them difficult to predict computationally, and they are refractory to standard proteomic approaches. Recent studies have discovered small proteins by mapping the location of translating ribosomes on RNA using a technique known as ribosome profiling. Discovery of translated sORFs using ribosome profiling can be improved by treating cells with drugs that trap initiating ribosomes. Here, we show that combining these data with equivalent data for cells treated with a drug that stalls terminating ribosomes facilitates the discovery of small proteins. We use this approach to discover 365 putative genes that encode small proteins in Escherichia coli.


Subject(s)
Proteomics , Ribosome Profiling , Open Reading Frames , Codon, Terminator , Escherichia coli/genetics , Amino Acids/genetics , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL