Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Hand Ther ; 35(1): 58-66, 2022.
Article in English | MEDLINE | ID: mdl-33250398

ABSTRACT

STUDY DESIGN: This is a Delphi study based on a scoping literature review. INTRODUCTION: Targeted muscle reinnervation (TMR) enables patients with high upper limb amputations to intuitively control a prosthetic arm with up to six independent control signals. Although there is a broad agreement regarding the importance of structured motor learning and prosthetic training after such nerve transfers, to date, no evidence-based protocol for rehabilitation after TMR exists. PURPOSE OF THE STUDY: We aimed at developing a structured rehabilitation protocol after TMR surgery after major upper limb amputation. The purpose of the protocol is to guide clinicians through the full rehabilitation process, from presurgical patient education to functional prosthetic training. METHODS: European clinicians and researchers working in upper limb prosthetic rehabilitation were invited to contribute to a web-based Delphi study. Within the first round, clinical experts were presented a summary of recent literature and were asked to describe the rehabilitation steps based on their own experience and scientific evidence. The second round was used to refine these steps, while the importance of each step was rated within the third round. RESULTS: Experts agreed on a rehabilitation protocol that consists of 16 steps and starts before surgery. It is based on two overarching principles, namely the necessity of multiprofessional teamwork and a careful selection and education of patients within the rehabilitation team. Among the different steps in therapy, experts rated the training with electromyographic biofeedback as the most important one. DISCUSSION: Within this study, a first rehabilitation protocol for TMR patients based on a broad experts' consensus and relevant literature could be developed. The detailed steps for rehabilitation start well before surgery and prosthetic fitting, and include relatively novel interventions as motor imagery and biofeedback. Future studies need to further investigate the clinical outcomes and thereby improve therapists' practice. CONCLUSION: Graded rehabilitation offered by a multiprofessional team is needed to enable individuals with upper limb amputations and TMR to fully benefit from prosthetic reconstruction. LEVEL OF EVIDENCE: Low.


Subject(s)
Amputees , Artificial Limbs , Amputation, Surgical/rehabilitation , Amputees/rehabilitation , Arm , Biofeedback, Psychology , Electromyography , Humans , Muscle, Skeletal , Upper Extremity
2.
J Vis Exp ; (151)2019 09 28.
Article in English | MEDLINE | ID: mdl-31609322

ABSTRACT

In patients with global brachial plexus injury and lack of biological treatment alternatives, bionic reconstruction, including the elective amputation of the functionless hand and its replacement with a prosthesis, has recently been described. Optimal prosthetic function depends on a structured rehabilitation protocol, as residual muscle activity in a patient's arm is later translated into prosthetic function. Surface electromyographic (sEMG) biofeedback has been used during rehabilitation after stroke, but has so far not been used in patients with complex peripheral nerve injuries. Here, we present our rehabilitation protocol implemented in patients with global brachial plexus injuries suitable for bionic reconstruction, starting from identification of sEMG signals to final prosthetic training. This structured rehabilitation program facilitates motor relearning, which may be a cognitively debilitating process after complex nerve root avulsion injuries, aberrant re-innervation and extra-anatomical reconstruction (as is the case with nerve transfer surgery). The rehabilitation protocol using sEMG biofeedback aids in the establishment of new motor patterns as patients are being made aware of the advancing re-innervation process of target muscles. Additionally, faint signals may also be trained and improved using sEMG biofeedback, rendering a clinically "useless" muscle (exhibiting muscle strength M1 on the British Medical Research Council [BMRC] scale) eligible for dexterous prosthetic hand control. Furthermore, functional outcome scores after successful bionic reconstruction are presented in this article.


Subject(s)
Biofeedback, Psychology/methods , Brachial Plexus/injuries , Electromyography/methods , Muscle, Skeletal/physiology , Adult , Bionics , Humans , Male , Nerve Transfer/methods , Treatment Outcome , Wounds and Injuries/rehabilitation
3.
PLoS One ; 14(4): e0214991, 2019.
Article in English | MEDLINE | ID: mdl-30995268

ABSTRACT

Drop foot is a frequent abnormality in gait after central nervous system lesions. Different treatment strategies are available to functionally restore dorsal extension during swing phase in gait. Orthoses as well as surface and implantable devices for electrical stimulation of the peroneal nerve may be used in patients who do not regain good dorsal extension. While several studies investigated the effects of implanted systems on walking speed and gait endurance, only a few studies have focussed on the system's impact on kinematics and long-term outcomes. Therefore, our aim was to further investigate the effects of the implanted system ActiGait on gait kinematics and spatiotemporal parameters for the first time with a 1-year follow-up period. 10 patients were implanted with an ActiGait stimulator, with 8 patients completing baseline and follow-up assessments. Assessments included a 10-m walking test, video-based gait analysis and a Visual Analogue Scale (VAS) for health status. At baseline, gait analysis was performed without any assistive device as well as with surface electrical stimulation. At follow-up patients walked with the ActiGait system switched off and on. The maximum dorsal extension of the ankle at initial contact increased significantly between baseline without stimulation and follow-up with ActiGait (p = 0.018). While the spatio-temporal parameters did not seem to change much with the use of ActiGait in convenient walking speed, patients did walk faster when using surface stimulation or ActiGait compared to no stimulation at the 10-m walking test at their fastest possible walking speed. Patients rated their health better at the 1-year follow-up. In summary, a global improvement in gait kinematics compared to no stimulation was observed and the long-term safety of the device could be confirmed.


Subject(s)
Electric Stimulation Therapy , Electrodes, Implanted , Foot , Gait , Orthotic Devices , Paresis , Peroneal Nerve/physiopathology , Adult , Aged , Female , Humans , Male , Middle Aged , Paresis/physiopathology , Paresis/therapy
4.
J Neurosci ; 37(46): 11285-11292, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29054880

ABSTRACT

We compared the behavior of motor neurons innervating their physiological muscle targets with motor neurons from the same spinal segment whose axons were surgically redirected to remnant muscles (targeted muscle reinnervation). The objective was to assess whether motor neurons with nonphysiological innervation receive similar synaptic input and could be voluntary controlled as motor neurons with natural innervation. For this purpose, we acquired high-density EMG signals from the biceps brachii in 5 male transhumeral amputees who underwent targeted reinnervation of this muscle by the ulnar nerve and from the first dorsal interosseous muscle of 5 healthy individuals to investigate the natural innervation of the ulnar nerve. The same recordings were also performed from the biceps brachii muscle of additional 5 able-bodied individuals. The EMG signals were decomposed into discharges of motor unit action potentials. Motor neurons were progressively recruited for the full range of submaximal muscle activation in all conditions. Moreover, their discharge rate significantly increased from recruitment to target activation level in a similar way across the subject groups. Motor neurons across all subject groups received common synaptic input as identified by coherence analysis of their spike trains. However, the relative strength of common input in both the delta (0.5-5 Hz) and alpha (5-13 Hz) bands was significantly smaller for the surgically reinnervated motor neuron pool with respect to the corresponding physiologically innervated one. The results support the novel approach of motor neuron interfacing for prosthesis control and provide new insights into the role of afferent input on motor neuron activity.SIGNIFICANCE STATEMENT Targeted muscle reinnervation surgically redirects nerves that lost their target in the amputation into redundant muscles in the region of the stump. The study of the behavior of motor neurons following this surgery is needed for designing biologically inspired prosthetic control strategies. Moreover, targeted muscle reinnervation offers a human experimental framework for studying the control and behavior of motor neurons when changing their target innervated muscle fibers and sensory feedback. Here, we show that the control of motor neurons and their synaptic input, following reinnervation, was remarkably similar to that of the physiological innervation, although with reduced common drive at some frequencies. The results advance our knowledge on the role of sensory input in the generation of the neural drive to muscles and provide the basis for designing physiologically inspired methods for prosthesis control.


Subject(s)
Amputation Stumps/innervation , Motor Neurons/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Nerve Regeneration/physiology , Synapses/physiology , Action Potentials/physiology , Adult , Amputation Stumps/physiopathology , Humans , Male , Middle Aged , Neurofeedback/methods , Neurofeedback/physiology , Radial Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL