Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Plant Commun ; 4(2): 100469, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36307985

ABSTRACT

Astragalus membranaceus var. mongholicus (AMM), a member of the Leguminosae, is one of the most important medicinal plants worldwide. The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine. Here, we report the first chromosome-level reference genome of AMM, comprising nine pseudochromosomes with a total size of 1.47 Gb and 27 868 protein-encoding genes. Comparative genomic analysis reveals that AMM has not experienced an independent whole-genome duplication (WGD) event after the WGD event shared by the Papilionoideae species. Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago, which may explain the large size of the AMM genome. Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded, and our data indicate that tandem duplication has been the main driver for expansion of these families. Among the expanded families, the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM, suggesting their roles in the biosynthesis of phenylpropanoid compounds. The functional versatility of 2,3-oxidosqualene cyclase genes in cluster III may play a critical role in the diversification of triterpenoids in AMM. Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.


Subject(s)
Plants, Medicinal , Triterpenes , Astragalus propinquus/genetics , Flavonoids/analysis , Plant Roots/genetics
2.
Mitochondrial DNA B Resour ; 7(8): 1559-1561, 2022.
Article in English | MEDLINE | ID: mdl-36051369

ABSTRACT

Patrinia monandra C. B. Clarke is traditionally used for the treatment of inflammation, typhoid fever, injuries due to falls, abdominal pain, malaria, and acute appendicitis ulcers in China and Korea. In this study, the complete chloroplast genome of P. monandra was sequenced using the Illumina HiSeq X-Ten platform. It had a circular shape and a length of 158,940 bp, with 38.51% GC content. It contained a large single-copy region of 87,641 bp, a small single-copy region of 12,807 bp, and two inverted repeat regions of 29,246 bp. In total, 128 different genes, including 83 protein-coding genes, 37 distinct tRNA genes, and eight rRNA genes, were identified. Maximum-likelihood phylogenomic analysis showed that P. monandra is closely related to Patrinia scabiosifolia and Patrinia villosa in the Valerianaceae family. There were 4535 variable sites, 157,354 conserved sites, and 3085 singleton sites in the six Patrinia chloroplast genomes.

3.
Phytother Res ; 36(9): 3540-3554, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35703011

ABSTRACT

Protein signaling complexes play important roles in prevention of several cancer types and can be used for development of targeted therapy. The roles of signaling complexes of phosphodiesterase 3B (PDE3B) and Rap guanine nucleotide exchange factor 3 (RAPGEF3), which are two important enzymes of cyclic adenosine monophosphate (cAMP) metabolism, in cancer have not been fully explored. In the current study, a natural product Kaempferol-3-O-(3'',4''-di-E-p-coumaroyl)-α-L-rhamnopyranoside designated as KOLR was extracted from Cinnamomum pauciflorum Nees leaves. KOLR exhibited higher cytotoxic effects against BxCP-3 pancreatic cancer cell line. In BxPC-3 cells, the KOLR could enhance the formation of RAPGEF 3/ PDE3B protein complex to inhibit the activation of Rap-1 and PI3K-AKT pathway, thereby promoting cell apoptosis and inhibiting cell metastasis. Mutation of RAPGEF3 G557A or low expression of PDE3B inactivated the binding action of KOLR resulting in KOLR resistance. The findings of this study show that PDE3B/RAPGEF3 complex is a potential therapeutic cancer target.


Subject(s)
Cinnamomum , Phosphatidylinositol 3-Kinases , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Leaves/metabolism
4.
Front Pharmacol ; 12: 695560, 2021.
Article in English | MEDLINE | ID: mdl-34456722

ABSTRACT

The root of Reynoutria multiflora (Thunb.) Moldenke (syn: Polygonum multiflorum Thunb.) is a distinguished herb that has been popularly used in traditional Chinese medicine. The raw Reynoutria multiflora (RRM) should be processed by steaming before use, and the processing time is not specified in the processing specification. Our previous studies showed that the efficacy and toxicity of processed Reynoutria multiflora (PRM) at different processing times were inconsistent. A comprehensive identification method was established in this study to find a quality marker of raw Reynoutria multiflora (RRM) and processed Reynoutria multiflora (PRM) with different processing times. Metabolomics based on ultra-high-performance liquid chromatography tandem quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UHPLC-Q-Exactive plus orbitrap MS/MS) was used in this study. Using the CD.2 software processed database, multivariate statistical analysis methods coupled with cluster analysis and heatmap were implemented to distinguish between RRMs and PRMs with different processing times. The results showed that RRM and PRMs processed for 4, 8, 12, and 18 h cluster into group 1, and PRM processed for 24 and 32 h into group 2, indicating that it can effectively distinguish between the two groups and twenty potential markers, made the highest contributions to the observed chemical differences between two groups. Among them, tetrahydroxystilbene-O-hexoside-O-galloyl and sucrose can be used to identify PRM processed for 24 h. Therefore, the properties of RRM changed after 24 h of processing, and the quality markers were screened to distinguish RRM and PPM. It can also be used as an important control technology for the processing of RM, which has wide application prospects.

5.
Phytother Res ; 35(8): 4555-4566, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34146352

ABSTRACT

Although clinically approved hepatitis B virus (HBV) polymerase inhibitors (lamivudine-3TC, entecavir, etc.) serve as effective therapeutics, the virus can easily generate resistance to them. Therefore, the treatment of HBV infection remains a public health problem. Numerous studies have shown that natural products have prospective anti-HBV activity. The purpose of this study was to isolate and extract des(rhamnosyl) verbascoside from Lindernia ruellioides (Colsm.) Pennell and explore its anti-HBV and hepatoprotective effects. Anti-HBV activity was evaluated in HepG2.2.15 cells, a human hepatocellular carcinoma cell line with HBV-stable infection, and its protective effect was evaluated in HL-7702 cells, a normal human liver cell line. HepG2.2.15 cells maintained normal growth morphology within the selected concentration range of des(rhamnosyl) verbascoside. It also inhibited the expression of HBV antigens and HBV DNA in a dose- and time-dependent manner in vitro. Further, western blot experiments showed that it could downregulate HBV X protein (HBx) expression in a dose-dependent manner. In the H2 O2 -induced hepatocyte injury model, the cell-survival rate of the HL-7702 cells with the highest drug dose reached 85.25%, which was significantly improved compared with that of the model group. Most of the cells returned to normal morphology, showing polygonal or fusiform structures. Thus, it may be stated that des(rhamnosyl) verbascoside exhibits anti-HBV activity and hepatoprotective effects in vitro and may exert an anti-HBV effect via antigen inhibition, HBV DNA secretion, and HBx protein expression.


Subject(s)
Antiviral Agents , Carcinoma, Hepatocellular , Glucosides/pharmacology , Hepatitis B virus/drug effects , Lamiales/chemistry , Liver Neoplasms , Phenols/pharmacology , Antiviral Agents/pharmacology , Hep G2 Cells , Humans , Protective Agents/pharmacology , Virus Replication/drug effects
6.
mSphere ; 4(6)2019 12 18.
Article in English | MEDLINE | ID: mdl-31852807

ABSTRACT

Infections triggered by pathogenic fungi cause a serious threat to the public health care system. In particular, an increase of antifungal drug-resistant fungi has resulted in difficulty in treatment. A limited variety of antifungal drugs available to treat patients has left us in a situation where we need to develop new therapeutic approaches that are less prone to development of resistance by pathogenic fungi. In this study, we demonstrate the efficacy of the nanoemulsion NB-201, which utilizes the surfactant benzalkonium chloride, against human-pathogenic fungi. We found that NB-201 exhibited in vitro activity against Candidaalbicans, including both planktonic growth and biofilms. Furthermore, treatments with NB-201 significantly reduced the fungal burden at the infection site and presented an enhanced healing process after subcutaneous infections by multidrug-resistant C. albicans in a murine host system. NB-201 also exhibited in vitro growth inhibition activity against other fungal pathogens, including Cryptococcus spp., Aspergillus fumigatus, and Mucorales Due to the nature of the activity of this nanoemulsion, there is a minimized chance of drug resistance developing, presenting a novel treatment to control fungal wound or skin infections.IMPORTANCE Advances in medicine have resulted in the discovery and implementation of treatments for human disease. While these recent advances have been beneficial, procedures such as solid-organ transplants and cancer treatments have left many patients in an immunocompromised state. Furthermore, the emergence of immunocompromising diseases such as HIV/AIDS or other immunosuppressive medical conditions have opened an opportunity for fungal infections to afflict patients globally. The development of drug resistance in human-pathogenic fungi and the limited array of antifungal drugs has left us in a scenario where we need to develop new therapeutic approaches to treat fungal infections that are less prone to the development of resistance by pathogenic fungi. The significance of our work lies in utilizing a novel nanoemulsion formulation to treat topical fungal infections while minimizing risks of drug resistance development.


Subject(s)
Antifungal Agents/pharmacology , Benzalkonium Compounds/pharmacology , Fungi/drug effects , Polysorbates/pharmacology , Soybean Oil/pharmacology , Animals , Antifungal Agents/administration & dosage , Benzalkonium Compounds/administration & dosage , Candidiasis/drug therapy , Disease Models, Animal , Drug Combinations , Mice , Microbial Sensitivity Tests , Polysorbates/administration & dosage , Soybean Oil/administration & dosage , Treatment Outcome
7.
Biomed Res Int ; 2019: 2692970, 2019.
Article in English | MEDLINE | ID: mdl-30800665

ABSTRACT

In previous studies, Gentianella acuta (Michx.) Hulten was reported to contain xanthones, iridoids, terpenoids, and sterols and is mainly used to cure hepatitis, jaundice, fever, headache, and angina pectoris. In this study, we used bioassay guided fractionation to identify compounds from G. acuta and investigated their activity against hydrogen peroxide (H2O2)-induced apoptosis of H9c2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic (GCLC) expression were assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated using western blot. The results showed that all four compounds had protective effects on H9c2 cells. The transcription levels of HO-1 and GCLC significantly increased in H9c2 cells pretreated with norswertianolin (1), swetrianolin (2), demethylbellidifolin (3), and bellidifolin (4). However, compared to the model group, the transcription levels of Nrf2 were not enhanced by pretreatment with compounds 1, 2, and 4. The protein expression levels of HO-1 and GCLC in H9c2 cells were greater than that in the H2O2-treated group, and the expression of Nrf2 was not significantly changed except by swetrianolin treatment; inhibitors can reverse the protective effect by ZnPP (15 µM), BSO (10 µM), and brusatol (10 µM). The results indicated that the four compounds isolated from G. acuta inhibited the oxidative injury induced by H2O2 by activating the Nrf2/ARE pathway in H9c2 cells and provide evidence that G. acuta may be a potential therapeutic agent for the treatment of cardiovascular diseases.


Subject(s)
Gentianella/chemistry , Hydrogen Peroxide/pharmacology , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Glutamate-Cysteine Ligase/metabolism , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats , Transcription, Genetic/drug effects , Xanthenes/pharmacology , Xanthones/pharmacology
8.
Plant Mol Biol ; 99(3): 205-217, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30627860

ABSTRACT

KEY MESSAGE: We identified three dormant stages of Polygonatum kingianum and changes that occurred during dormancy transition in the following aspects including cell wall and hormones, as well as interaction among them. Polygonatum kingianum Coll.et Hemsl (P. kingianum) is an important traditional Chinese medicine, but the mechanism of its rhizome bud dormancy has not yet been studied systematically. In this study, three dormancy phases were induced under controlled conditions, and changes occurring during the transition were examined, focusing on phytohormones and the cell wall. As revealed by HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry) analysis, the endo- to non-dormancy transition was association with a reduced abscisic acid (ABA)/gibberellin (GA3) ratio, a decreased level of auxin (IAA) and an increased level of trans-zeatin (tZR). Transmission electron microscopy showed that plasmodesmata (PDs) and the cell wall of the bud underwent significant changes between endo- and eco-dormancy. A total of 95,462 differentially expressed genes (DEGs) were identified based on transcriptomics, and clustering and principal component analysis confirmed the different physiological statuses of the three types of bud samples. Changes in the abundance of transcripts associated with IAA, cytokinins (CTKs), GA, ABA, brassinolide (BR), jasmonic acid (JA), ethylene, salicylic acid (SA), PDs and cell wall-loosening factors were analysed during the bud dormancy transition in P. kingianum. Furthermore, nitrilase 4 (NIT4) and tryptophan synthase alpha chain (TSA1), which are related to IAA synthesis, were identified as hub genes of the co-expression network, and strong interactions between hormones and cell wall-related factors were observed. This research will provide a good model for chilling-treated rhizome bud dormancy in P. kingianum and cultivation of this plant.


Subject(s)
Cell Wall/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Indoleacetic Acids/metabolism , Plant Dormancy/genetics , Plant Growth Regulators/genetics , Polygonatum/genetics , Rhizome/genetics , Abscisic Acid/genetics , Abscisic Acid/metabolism , Brassinosteroids/metabolism , Cell Wall/metabolism , Cell Wall/ultrastructure , Cluster Analysis , Cyclopentanes/metabolism , Cytokinins/metabolism , Ethylenes/metabolism , Gene Expression Profiling , Gibberellins/genetics , Gibberellins/metabolism , Medicine, Chinese Traditional , Oxylipins/metabolism , Plant Dormancy/physiology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polygonatum/metabolism , Rhizome/metabolism , Salicylic Acid/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Steroids, Heterocyclic/metabolism , Tryptophan Synthase/metabolism
9.
RSC Adv ; 9(40): 23373-23381, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-35514483

ABSTRACT

CRP (Citri Reticulatae Pericarpium), a famous traditional Chinese medicine, has also been extensively used in foods and condiments in dietary practice for centuries. According to the Chinese Pharmacopeia (2015 edition) it contains two subtypes, Guangchenpi (GCP) and Chenpi (CP). GCP exclusively originates from the pericarp of Citrus reticulata 'Chachi' cultivar and it's generally believed that GCP has superior qualities compared with the other main cultivars (CP). In the present study, an integrated approach combining LC-QTOF MS-based untargeted metabolomics analysis and DNA barcoding molecular identification was conducted to study the genetic diversity and chemical differences between GCP and CP. A validated UPLC-QTOF MS metabolomics method was established to identify markers by using PCA and OPLS-DA models. 34 identified metabolites could be used as chemical markers to distinguish effectively between the two subtypes. Among them polymethoxyflavones (PMF) such as hexamethoxyflavone (nobiletin and natsudaidain), pentamethoxyflavone (tangeretin and sinensetin), and tetramethoxyflavone are the most influential markers. Support vector machines were employed to classify all the samples and these markers showed good prediction accuracy (100%). The results of DNA barcoding showed that the secondary structure of the ITS2 sequences were significantly different among GCP and other three cultivars. The study indicated the integrated method could be a powerful and reliable analytical tool for differentiating GCP from CP.

10.
Molecules ; 24(1)2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30577553

ABSTRACT

Herb genomics and comparative genomics provide a global platform to explore the genetics and biology of herbs at the genome level. Panax ginseng C.A. Meyer is an important medicinal plant for a variety of bioactive chemical compounds of which the biosynthesis may involve transport of a wide range of substrates mediated by oligopeptide transporters (OPT). However, information about the OPT family in the plant kingdom is still limited. Only 17 and 18 OPT genes have been characterized for Oryza sativa and Arabidopsis thaliana, respectively. Additionally, few comprehensive studies incorporating the phylogeny, gene structure, paralogs evolution, expression profiling, and co-expression network between transcription factors and OPT genes have been reported for ginseng and other species. In the present study, we performed those analyses comprehensively with both online tools and standalone tools. As a result, we identified a total of 268 non-redundant OPT genes from 12 flowering plants of which 37 were from ginseng. These OPT genes were clustered into two distinct clades in which clade-specific motif compositions were considerably conservative. The distribution of OPT paralogs was indicative of segmental duplication and subsequent structural variation. Expression patterns based on two sources of RNA-Sequence datasets suggested that some OPT genes were expressed in both an organ-specific and tissue-specific manner and might be involved in the functional development of plants. Further co-expression analysis of OPT genes and transcription factors indicated 141 positive and 11 negative links, which shows potent regulators for OPT genes. Overall, the data obtained from our study contribute to a better understanding of the complexity of the OPT gene family in ginseng and other flowering plants. This genetic resource will help improve the interpretation on mechanisms of metabolism transportation and signal transduction during plant development for Panax ginseng.


Subject(s)
Ginsenosides/chemistry , Ginsenosides/metabolism , Magnoliopsida/metabolism , Panax/chemistry , Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genome, Plant/genetics , Magnoliopsida/genetics , Phylogeny , Transcription Factors/genetics
11.
PLoS One ; 13(7): e0201240, 2018.
Article in English | MEDLINE | ID: mdl-30044868

ABSTRACT

Southern Chinese Medicine (SCM) is an important sect of Traditional Chinese Medicine (TCM) with its own special cultural style. Species identification is essential for TCM quality control because authentic herbs are possibly substituted with adulterants that would threaten the health of the public or even cause death. Here, we provided the first local reference DNA barcode library based on the second internal transcribed spacer (ITS2) for the molecular identification of SCM. A total of 1512 specimens of southern herbs representing 359 species were collected under the instructions and identification of taxonomic experts. Genomic DNA was extracted, and the PCR reaction proceeded according to standard procedures. After Sanger sequencing, sequence assembling and annotation, a reliable ITS2 barcode library with 1276 sequences from 309 species of Southern herbs was constructed. The PCR efficiency of the whole samples was 84.39%. Characteristics of the ITS2 barcode were analyzed, including sequence lengths and GC contents in different taxa. Neighbor-joining trees based on Kimura 2-Parameter (K2P) genetic distances showed a 67.56% successful rate of species identification with ITS2 barcode. In addition, 96.57% of species could be successfully identified at the genus level by the BLAST method. Eleven plant species were discovered to be cryptic. In addition, we found that there is an incorrect sequence existing in the public database, making a reliable local DNA barcode reference more meaningful. ITS2 barcodes exhibit advantages in TCM identification. This DNA barcode reference library could be used in Southern Chinese Medicine quality control, thus contributing to protecting public health.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Gene Library , Plants, Medicinal/genetics , China , Drugs, Chinese Herbal/metabolism , Genetic Variation , Medicine, Chinese Traditional , Quality Control
12.
Zhongguo Zhong Yao Za Zhi ; 42(7): 1287-1291, 2017 Apr.
Article in Chinese | MEDLINE | ID: mdl-29052388

ABSTRACT

The study identified the main morphological index of the seedlings classification including seedling age,the root width and number of newborn buds and coarse roots, according to the local agricultural production techniques and assessment of Liriope spicata's growth and development condition. After carrying on K cluster analysis of the morphological, we separated the seedlings into two levels. The first level (Ⅰ): the new talent with the root width exceeding two point five millimeters, the new born buds exceeding three, and with the coarse root exceeding one. The second level (Ⅱ): the old talent with the root width below one millimeters, the newborn buds below two and without coarse root. The study surveyed the plants' growth index dynamics, as well as the yield and quality of the tuberous root. The experimental results suggested that the growth condition of seedling Ⅰwas better, the yield of earthnut higher, the quality of earthnut more excellent. The study lied the foundation of L. spicata's grading standards and standardized production.


Subject(s)
Liriope Plant/growth & development , Seedlings/growth & development , Plant Roots/growth & development
13.
Gigascience ; 6(11): 1-15, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29048480

ABSTRACT

Ginseng, which contains ginsenosides as bioactive compounds, has been regarded as an important traditional medicine for several millennia. However, the genetic background of ginseng remains poorly understood, partly because of the plant's large and complex genome composition. We report the entire genome sequence of Panax ginseng using next-generation sequencing. The 3.5-Gb nucleotide sequence contains more than 60% repeats and encodes 42 006 predicted genes. Twenty-two transcriptome datasets and mass spectrometry images of ginseng roots were adopted to precisely quantify the functional genes. Thirty-one genes were identified to be involved in the mevalonic acid pathway. Eight of these genes were annotated as 3-hydroxy-3-methylglutaryl-CoA reductases, which displayed diverse structures and expression characteristics. A total of 225 UDP-glycosyltransferases (UGTs) were identified, and these UGTs accounted for one of the largest gene families of ginseng. Tandem repeats contributed to the duplication and divergence of UGTs. Molecular modeling of UGTs in the 71st, 74th, and 94th families revealed a regiospecific conserved motif located at the N-terminus. Molecular docking predicted that this motif captures ginsenoside precursors. The ginseng genome represents a valuable resource for understanding and improving the breeding, cultivation, and synthesis biology of this key herb.


Subject(s)
Genome, Plant , Ginsenosides/biosynthesis , Panax/genetics , Ginsenosides/genetics , Glycosyltransferases/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Mevalonic Acid/metabolism , Molecular Sequence Annotation
14.
Molecules ; 22(6)2017 May 31.
Article in English | MEDLINE | ID: mdl-28561788

ABSTRACT

Herbgenomics provides a global platform to explore the genetics and biology of herbs on the genome level. Panax ginseng C.A. Meyer is an important medicinal plant with numerous pharmaceutical effects. Previous reports mainly discussed the transcriptome of ginseng at the organ level. However, based on mass spectrometry imaging analyses, the ginsenosides varied among different tissues. In this work, ginseng root was separated into three tissues-periderm, cortex and stele-each for five duplicates. The chemical analysis and transcriptome analysis were conducted simultaneously. Gene-encoding enzymes involved in ginsenosides biosynthesis and modification were studied based on gene and molecule data. Eight widely-used ginsenosides were distributed unevenly in ginseng roots. A total of 182,881 unigenes were assembled with an N50 contig size of 1374 bp. About 21,000 of these unigenes were positively correlated with the content of ginsenosides. Additionally, we identified 192 transcripts encoding enzymes involved in two triterpenoid biosynthesis pathways and 290 transcripts encoding UDP-glycosyltransferases (UGTs). Of these UGTs, 195 UGTs (67.2%) were more highly expressed in the periderm, and that seven UGTs and one UGT were specifically expressed in the periderm and stele, respectively. This genetic resource will help to improve the interpretation on complex mechanisms of ginsenosides biosynthesis, accumulation, and transportation.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Ginsenosides/isolation & purification , Panax/chemistry , Plant Roots/chemistry , Transcriptome , Gene Expression Profiling/methods , Gene Ontology , Ginsenosides/biosynthesis , Ginsenosides/chemistry , Ginsenosides/classification , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Molecular Sequence Annotation , Multigene Family , Organ Specificity , Panax/genetics , Panax/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Triterpenes/chemistry , Triterpenes/classification , Triterpenes/isolation & purification , Triterpenes/metabolism
15.
Nanomedicine (Lond) ; 12(10): 1177-1185, 2017 May.
Article in English | MEDLINE | ID: mdl-28447896

ABSTRACT

AIM: To develop NB-201, a nanoemulsion compound, as a novel microbicidal agent against methicillin-resistant Staphylococcus aureus (MRSA) infection, which is a common threat to public health but with limited therapeutic options. MATERIALS & METHODS: NB-201 was tested in in vitro and in vivo murine and porcine models infected with MRSA. RESULTS: Topical treatment of MRSA-infected wounds with NB-201 significantly decreased bacterial load and had no toxic effects on healthy skin tissues. NB-201 attenuated neutrophil sequestration in MRSA-infected wounds and inhibited epidermal and deep dermal inflammation. The levels of proinflammatory cytokines were reduced in NB-201-treated MRSA-infected wounds. CONCLUSION: NB-201 can greatly reduce inflammation characteristic of infected wounds and has antimicrobial activity that effectively kills MRSA regardless of the genetic basis of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Benzalkonium Compounds/therapeutic use , Methicillin-Resistant Staphylococcus aureus/drug effects , Polysorbates/therapeutic use , Soybean Oil/therapeutic use , Staphylococcal Infections/drug therapy , Wound Infection/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Benzalkonium Compounds/pharmacology , Cytokines/analysis , Drug Combinations , Female , Humans , Mice , Microbial Sensitivity Tests , Polysorbates/pharmacology , Soybean Oil/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Swine , Wound Infection/microbiology , Wound Infection/pathology
16.
Zhonghua Wei Chang Wai Ke Za Zhi ; 20(1): 84-89, 2017 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-28105626

ABSTRACT

OBJECTIVE: To investigate the effects of polyunsaturated fatty acids (PUFA) ω-3 and ω-6, and their middle metabolites PGE2 and PGE3 on angiogenesis formation of gastric cancer, and to explore associated mechanism. METHODS: The effects of ω-3, ω-6, PGE2, PGE3 on the proliferation and migration of human umbilical vein endothelial cell (HUVEC) were measured by proliferation and migration assay respectively. The angiogenesis assay in vivo was used to measure the effects of ω-3, ω-6, PGE2 and PGE3 on neovascularization. In all the assays, groups without ω-3, ω-6, PGE2 and PGE3 were designed as the control. RESULTS: With the increased concentration of ω-6 from 1 µmol/L to 10 µmol/L, the proliferation ability of HUVECs enhanced, and the number of migration cells also increased from 28.2±3.0 to 32.8±2.1, which was higher than control group (21.2±3.2) respectively (both P<0.05). With the increased concentration of ω-3 from 1 µmol/L to 10 µmol/L, the proliferation ability of HUVECs was inhibited, and the number of migration cells decreased from 15.8±2.0 to 11.0±2.1, which was lower than control group (22.1±3.0) respectively (both P<0.05). In the angiogenesis assay, compared with control group (standard number: 43 721±4 654), the angiogenesis ability of HUVECs was significantly enhanced by ω-6 in concentration-dependent manner (1 µmol/L group: 63 238±4 795, 10 µmol/L group: 78 166±6 123, all P<0.01). Meanwhile, with the increased concentration of ω-3 from 1 µmol/L to 10 µmol/L, the angiogenesis ability was significantly decreased from 30 129±3 102 to 20 012±1 541(all P<0.01). The proliferation and migration ability of HUVECs were significantly promoted by ω-6 metabolites PGE2 (P<0.05) in a concentration-dependent manner. In contrast, ω-3 metabolites PGE3 significantly inhibited the proliferation and migration ability of HUVECs in a concentration-dependent manner (all P<0.05). After rofecoxib (a COX-2 specific inhibitor) inhibited the expression of COX-2, the expression level of PGE2 was significantly decreased in a dose-dependent manner. In co-culture system, whose gastric cancer cells expressed positive COX-2, ω-6 could increase angiogenesis of gastric cancer cells(P<0.01), but ω-3 could inhibit such angiogenesis(P<0.01). In co-culture system, whose gastric cancer cells did not express COX-2, ω-3 could inhibit the angiogenesis of gastric cancer cells (P<0.05), but ω-6 had no effect on angiogenesis. CONCLUSIONS: The PUFA ω-6 can enhance the angiogenesis via the promotion of proliferation and migration of HUVECs, and COX-2 and PGE2 may play an important role in this process, whereas, the ω-3 can inhibit the angiogenesis through its middle metabolites PGE3 to inhibit the proliferation and migration of HUVECs. Results of this experiment may provide a new approach to inhibit and prevent the spread of gastric cancer.


Subject(s)
Alprostadil/analogs & derivatives , Angiogenesis Inducing Agents/pharmacology , Cell Line, Tumor/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Dinoprostone/pharmacology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Fatty Acids, Unsaturated/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Pathologic/physiopathology , Alprostadil/pharmacology , Angiogenesis Inducing Agents/metabolism , Angiogenesis Inhibitors/pharmacology , Cell Count/methods , Cell Line, Tumor/physiology , Cell Migration Assays , Coculture Techniques , Cyclooxygenase 2/pharmacology , Dinoprostone/metabolism , Fatty Acids, Omega-6/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Lactones/pharmacology , Stomach Neoplasms/physiopathology , Sulfones/pharmacology
17.
Mil Med ; 181(5 Suppl): 259-64, 2016 05.
Article in English | MEDLINE | ID: mdl-27168582

ABSTRACT

Despite advances in antimicrobial therapies, wound infection remains a global public health concern. We aimed to formulate and assess various nanoemulsions (NEs) for potential effectiveness as stable antimicrobial agents suitable for topic application. A total of 106 NEs were developed that varied with respect to nonionic and cationic surfactants. Stability testing demonstrated that the NEs tested are broadly stable, with 97/106 formulations passing 2-week stability tests. Two NEs, NB-201 and NB-402, were selected to test antimicrobial activity in a wound model in mice. Skin abrasion wounds were infected with Staphylococcus aureus followed by NE treatment. Infected skin was then evaluated by measuring colony forming units. NB-201 reduced median bacterial counts by 4 to 5 log compared to animals treated with saline, whereas NB-402 reduced bacterial counts by 2 to 3 log. Additional stability tests on NB-201 demonstrated that NB-201 is stable in the presence of human serum, and is stable for at least 6 months at 5°C, 25°C, and 40°C. Finally, in in vitro studies, NB-201 was found to be effective against S. aureus at a higher dilution than the commercially available silver sulfadiazine. Altogether these results demonstrate that NB-201 is a stable and effective topical antimicrobial for the treatment of S. aureus.


Subject(s)
Benzalkonium Compounds/pharmacology , Cetylpyridinium/pharmacology , Poloxamer/pharmacology , Polysorbates/pharmacology , Soybean Oil/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Animals , Anti-Infective Agents, Local/administration & dosage , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/therapeutic use , Benzalkonium Compounds/administration & dosage , Benzalkonium Compounds/therapeutic use , Cetylpyridinium/administration & dosage , Cetylpyridinium/therapeutic use , Drug Combinations , Mice , Models, Animal , Poloxamer/administration & dosage , Poloxamer/therapeutic use , Polysorbates/administration & dosage , Polysorbates/therapeutic use , Silver Sulfadiazine/administration & dosage , Silver Sulfadiazine/pharmacology , Silver Sulfadiazine/therapeutic use , Soybean Oil/administration & dosage , Soybean Oil/therapeutic use , Wound Infection/drug therapy , Wound Infection/prevention & control
18.
Nanomaterials (Basel) ; 6(12)2016 Nov 25.
Article in English | MEDLINE | ID: mdl-28335351

ABSTRACT

A nanoemulsion (NE) is a surfactant-based, oil-in-water, nanoscale, high-energy emulsion with a mean droplet diameter of 400-600 nm. When mixed with antigen and applied nasally, a NE acts as a mucosal adjuvant and induces mucosal immune responses. One possible mechanism for the adjuvant effect of this material is that it augments antigen uptake and distribution to lymphoid tissues, where the immune response is generated. Biocompatible iron oxide nanoparticles have been used as a unique imaging approach to study the dynamics of cells or molecular migration. To study the uptake of NEs and track them in vivo, iron oxide nanoparticles were synthesized and dispersed in soybean oil to make iron oxide-modified NEs. Our results show that iron oxide nanoparticles can be stabilized in the oil phase of the nanoemulsion at a concentration of 30 µg/µL and the iron oxide-modified NEs have a mean diameter of 521 nm. In vitro experiments demonstrated that iron oxide-modified NEs can affect uptake by TC-1 cells (a murine epithelial cell line) and reduce the intensity of magnetic resonance (MR) images by shortening the T2 time. Most importantly, in vivo studies demonstrated that iron oxide-modified NE could be detected in mouse nasal septum by both transmission electron microscopy and MR imaging. Altogether these experiments demonstrate that iron oxide-modified NE is a unique tool that can be used to study uptake and distribution of NEs after nasal application.

19.
Zhongguo Zhong Yao Za Zhi ; 41(14): 2625-2632, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-28905597

ABSTRACT

We introduced Epimedium wushanense seed which has been stratified for 90 days at 10/20 ℃ as experimental materials, with which we studied the effects of fluridone, gibberellin acid and temperature on E. wushanense germination. The results were suggested as shown below. ①Temperature, fluridone and gibberellin acid can both solely or jointly affect germination energy, germination rate significantly. Among those factors, fluridone affect germination rate and germination energy the most, followed by gibberellin acid and temperature. The highest germination rate under 4 ℃ and 10/20 ℃ stratification are 79.3%, 72.0% respectively, which resulted from treatment of F10GA300 and F20GA200 respectively. The highest germination energy under 4 ℃ and 10/20 ℃ stratification are 52.7%, 52.0%, respectively, which both resulted from F20GA200. ②Compared with 4 ℃ germination, seed could not germinate at 10/20 ℃ germination. Nontheless, application of fluridone can lead E. wushanense seeds to germinating.③The effects of gibberellin acid and interaction between gibberellin acid and fluridone significantly affect seed rotten rate during germination. In addition, soaking is another remarkable factor which increased seed rotten rate. As a result, it is feasible to promote E. wushanense dormancy releasing with gibberellin acid and fluridone associating with a proper germination temperature. Further, it is necessary taking actions to avoid seed rotten rate for saving E. wushanense nurseries'cost.


Subject(s)
Epimedium/physiology , Germination , Gibberellins/pharmacology , Plant Dormancy/drug effects , Pyridones/pharmacology , Temperature , Seeds/physiology
20.
Article in Chinese | WPRIM | ID: wpr-304861

ABSTRACT

In this research, a combined method of ligand-based pharmacophore (LBP), structure-based pharmacophore (SBP), and molecular docking was applied for virtual screening potential ATP-sensitive potassium channel (KATP) openers from Chinese herbs. LBP models were generated by 3D-QSAR pharmacophore(hypogen) program, based on the training set composed of 48 KATP agonists. The best LBP model consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic feature, one aromatic ring and five excluded volumes. Besides, the correlation coefficient of training set and test set, N, and CAI value of the model were 0.876 4, 0.705 8, 3.304, and 2.616 respectively. Meanwhile, SBP models were also generated based on a 3D structure of KATP (PMID: PM0079770). The best SBP model consisted of six hydrogen-bond acceptors, eight hydrogen-bond donors, seven hydrophobic features and eighteen excluded volumes. The corresponding N and CAI value were 2.200 and 2.017. Then, the best LBP model and SBP model were applied to identify potential KATP openers from Traditional Chinese Medicine Database(TCMD), respectively. 349 hits were obtained after analyzed by drug-likeness rules. Moreover, 12 compounds with high docking scores were reserved after molecular docking evaluation. Interestingly, part of the results had been verified as hypotensive active ingredients by literatures. Therefore, this study uncovers a specific target effect contained in TCMD, and provides candidates for new KATP openers' research.

SELECTION OF CITATIONS
SEARCH DETAIL