Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Commun Biol ; 5(1): 236, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301411

ABSTRACT

Brain derived neurotrophic factor (BDNF) promotes the growth, differentiation, maintenance and survival of neurons. These attributes make BDNF a potentially powerful therapeutic agent. However, its charge, instability in blood, and poor blood brain barrier (BBB) penetrability have impeded its development. Here, we show that engineered clathrin triskelia (CT) conjugated to BDNF (BDNF-CT) and delivered intranasally increased hippocampal BDNF concentrations 400-fold above that achieved previously with intranasal BDNF alone. We also show that BDNF-CT targeted Tropomyosin receptor kinase B (TrkB) and increased TrkB expression and downstream signaling in iTat mouse brains. Mice were induced to conditionally express neurotoxic HIV Transactivator-of-Transcription (Tat) protein that decreases BDNF. Down-regulation of BDNF is correlated with increased severity of HIV/neuroAIDS. BDNF-CT enhanced neurorestorative effects in the hippocampus including newborn cell proliferation and survival, granule cell neurogenesis, synaptogenesis and increased dendritic integrity. BDNF-CT exerted cognitive-enhancing effects by reducing Tat-induced learning and memory deficits. These results show that CT bionanoparticles efficiently deliver BDNF to the brain, making them potentially powerful tools in regenerative medicine.


Subject(s)
HIV Infections , Nanoparticles , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Clathrin/metabolism , Cognition , Drugs, Chinese Herbal , HIV Infections/metabolism , Hippocampus/metabolism , Mice , Neurogenesis/physiology
2.
Brain Res ; 1302: 34-41, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19769948

ABSTRACT

Prolactin (PRL), the major lactogenic hormone, acts also as neuromodulator and regulator of neuronal and glial plasticity in the brain. There is an increase in synthesis and release of PRL within the hypothalamus during peripartum and in response to stress. To identify mechanisms by which PRL induces neuroplasticity, we studied the ability of PRL to induce the transcription factor Egr-1 in the hypothalamic cell line, 4B, in vitro, and in specific neuronal cell types of the hypothalamus in vivo. PRL induced Egr-1 mRNA expression in 4B cells, an effect which was prevented by the MEK inhibitor, U0126. In vivo, intracerebroventricular PRL (1 microg) increased Egr-1 mRNA levels in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) of female rats. The increase in mRNA paralleled elevated Egr-1 protein expression in the PVN and SON. Double staining immunohistochemistry revealed Egr-1 localization in oxytocin neurons of the PVN and SON, but not in vasopressin neurons in these regions. In the dorsomedial PVN, a population of non-oxytocin or vasopressin cells localized in a region corresponding to corticotropin-releasing hormone neurons also showed marked Egr-1 immunoreactivity. The data suggest that PRL modulates plasticity in oxytocinergic neurons, through MAP kinase-dependent induction of Egr-1.


Subject(s)
Early Growth Response Protein 1/metabolism , Gene Expression/genetics , Hypothalamus/metabolism , Neuronal Plasticity/genetics , Oxytocin/metabolism , Prolactin/metabolism , Animals , Cells, Cultured , Corticotropin-Releasing Hormone/metabolism , Early Growth Response Protein 1/drug effects , Early Growth Response Protein 1/genetics , Enzyme Inhibitors/pharmacology , Female , Gene Expression/drug effects , Hypothalamus/cytology , Hypothalamus/drug effects , Immunohistochemistry , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Neuronal Plasticity/drug effects , Neurons/drug effects , Neurons/metabolism , Oxytocin/drug effects , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Prolactin/pharmacology , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Rats, Wistar , Supraoptic Nucleus/cytology , Supraoptic Nucleus/drug effects , Supraoptic Nucleus/metabolism
3.
Endocrinology ; 150(4): 1841-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19022892

ABSTRACT

Prolactin (PRL) modulates maternal behavior and mediates hypothalamic pituitary adrenal axis inhibition during lactation via PRL receptors in the brain. To identify mechanisms mediating these effects, we examined the effects of PRL on signaling and CRH transcription in hypothalamic neurons in vivo and in vitro. Western blot of hypothalamic proteins from rats receiving intracerebroventricular PRL injection revealed increases in phosphorylation of the MAPK and ERK. Double-staining immunohistochemistry demonstrated phosphorylated ERK localization in parvocellular CRH neurons as well as magnocellular vasopressin and oxytocin neurons of the hypothalamic paraventricular (PVN) and supraoptic nuclei. PRL also induced ERK phosphorylation in vitro in the hypothalamic cell line, 4B, which expresses PRL receptors, and in primary hypothalamic neuronal cultures. Using reporter gene assays in 4B cells, or quantitative RT-PCR for primary transcript in hypothalamic cell cultures, PRL potentiated forskolin-stimulated CRH transcription through activation of the ERK/MAPK pathway. The effect of PRL in hypothalamic cell cultures was unaffected by tetrodotoxin, suggesting a direct effect on CRH neurons. The data show that PRL activates the ERK/MAPK pathway and facilitates CRH transcription in CRH neurons, suggesting that the inhibitory effect of PRL on hypothalamo-pituitary-adrenal axis activity reported in vivo is indirect and probably mediated through modulation of afferent pathways to the PVN. In addition, the prominent stimulatory action of PRL on the ERK/MAPK pathway in the hypothalamic PVN and supraoptic nucleus is likely to mediate neuroplasticity of the neuroendocrine system during lactation.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Hypothalamus/cytology , Mitogen-Activated Protein Kinases/metabolism , Neurons/drug effects , Prolactin/pharmacology , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Animals , Blotting, Western , Cell Line , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Hypothalamus/metabolism , Immunohistochemistry , In Vitro Techniques , Neurons/metabolism , Phosphorylation/drug effects , Polymerase Chain Reaction , Rats , Rats, Wistar , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL