Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Acta Pharmacol Sin ; 44(11): 2151-2168, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37420104

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 µM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aß generation by inhibiting the ß-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aß plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aß generation in early AD, which is a potential therapeutic intervention for early AD treatment.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neurodegenerative Diseases , Mice , Humans , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Mice, Transgenic , Retina/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
2.
Phytomedicine ; 115: 154817, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121061

ABSTRACT

BACKGROUND: Jasminoidin (JA) and ursodeoxycholic acid (UA) were shown to act synergistically against ischemic stroke (IS) in our previous studies. PURPOSE: To investigate the holistic synergistic mechanism of JA and UA on cerebral ischemia. METHODS: Middle cerebral artery obstruction reperfusion (MCAO/R) mice were used to evaluate the efficacy of JA, UA, and JA combined with UA (JU) using neurological function testing and infarct volume examination. High-throughput RNA-seq combined with computational prediction and function-integrated analysis was conducted to gain insight into the comprehensive mechanism of synergy. The core mechanism was validated using western blotting. RESULTS: JA and UA synergistically reduced cerebral infarct volume and alleviated neurological deficits and pathological changes in MCAO/R mice. A total of 1437, 396, 1080, and 987 differentially expressed genes were identified in the vehicle, JA, UA, and JU groups, respectively. A strong synergistic effect between JA and UA was predicted using chemical similarity analysis, target profile comparison, and semantic similarity analysis. As the 'long-tail' drugs, the top 20 gene ontology (GO) biological processes of JA, UA, and JU groups primarily reflected inflammatory response and regulation of cytokine production, with specific GO terms of JU revealing enhanced regulation on immune response and tumor necrosis factor superfamily cytokine production. Comparably, the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling of common targets of JA, UA, and JU focused on extracellular matrix organization and signaling by interleukins, immune system, phagosomes, and lysosomes, which interlock and interweave to produce the synergistic effects of JU. The characteristic signaling pathway identified for JU highlighted the crosstalk between autophagy activation and inflammatory pathways, especially the Dectin-1-induced NF-κB activation pathway, which was validated by in vivo experiments. CONCLUSIONS: JA and UA can synergistically protect cerebral ischemia-reperfusion injury by attenuating Dectin-1-induced NF-κB activation. The strategy integrating high throughput data with computational models enables ever-finer mapping of 'long-tail' drugs to dynamic variations in condition-specific omics to clarify synergistic mechanisms.


Subject(s)
Brain Ischemia , Reperfusion Injury , Mice , Animals , NF-kappa B/metabolism , Ursodeoxycholic Acid/pharmacology , Signal Transduction , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Reperfusion Injury/metabolism , Cytokines
3.
World J Gastrointest Oncol ; 15(1): 36-54, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36684050

ABSTRACT

Gastric cancer (GC) is a common gastrointestinal tumor. Gastric precancerous lesions (GPL) are the last pathological stage before normal gastric mucosa transforms into GC. However, preventing the transformation from GPL to GC remains a challenge. Traditional Chinese medicine (TCM) has been used to treat gastric disease for millennia. A series of TCM formulas and active compounds have shown therapeutic effects in both GC and GPL. This article reviews recent progress on the herbal drugs and pharmacological mechanisms of TCM in preventing the transformation from GPL to GC, especially focusing on anti-inflammatory, anti-angiogenesis, proliferation, and apoptosis. This review may provide a meaningful reference for the prevention of the transformation from GPL to GC using TCM.

4.
Phytomedicine ; 109: 154609, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610141

ABSTRACT

BACKGROUND: Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE: To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS: A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS: THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS: THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.


Subject(s)
Complementary Therapies , Drugs, Chinese Herbal , Ischemic Stroke , Stroke , Humans , Drugs, Chinese Herbal/adverse effects , Ischemic Stroke/drug therapy , Medicine, Traditional , Stroke/drug therapy , Medicine, Chinese Traditional
5.
Biomed Chromatogr ; 35(12): e5202, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34145910

ABSTRACT

Because traditional Chinese medicine (TCM) is a complex mixture of multiple components, the application of methodologies for evaluating single-component Western medicine in TCM studies may have certain limitations. Appropriate strategies that recognize the integrality of TCM and connect to TCM theories remain to be developed. Yang-Xin-Ding-Ji (YXDJ) capsule is originally from a classical TCM formula used for the treatment of arrhythmia. In this study, we used UPLC-Q-TOF-MS detection method, coupled with the metabolic research and network pharmacology analysis, to study the scientific connotation of the YXDJ capsule. A total of 33 absorbed constituents and 23 metabolites were identified or tentatively characterized in dosed plasma and urine, and the possible metabolic pathways were mainly methylation, oxidation, sulfation, glucuronidation, and deglucosylation. We optimized the conventional process ways of network pharmacology by collecting targets based on absorbed constituents into the blood. The constituents-target disease and Kyoto Encyclopedia of Genes pathway analysis revealed that 24 absorbed constituents, 32 target genes, and 10 key pathways were probably related to the efficacy of the YXDJ capsule against arrhythmia. The results provided a scientific basis for understanding the bioactive compounds and the pharmacological mechanism of the YXDJ capsule.


Subject(s)
Drugs, Chinese Herbal , Metabolic Networks and Pathways/drug effects , Network Pharmacology/methods , Animals , Chromatography, High Pressure Liquid/methods , Databases, Genetic , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Male , Mass Spectrometry/methods , Protein Interaction Maps/drug effects , Rats , Rats, Sprague-Dawley
6.
J Ethnopharmacol ; 274: 114042, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33775806

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bitter-cold herbs have been used to clearing heat and expelling damp in clinical practice in China for thousands of years. AIM OF THE STUDY: This study aimed to investigate the common molecular mechanism of bitter-cold herbs through network pharmacology analysis, molecular docking and experimental validation in vivo. MATERIALS AND METHODS: Network pharmacological analysis integrated with molecular docking was employed to identify the active compounds and core action targets of the bitter-cold herbs. Then, the yeast-induced pathological model was established, and the antipyretic effect of the herbs was evaluated by checking rectal temperatures of the mice hourly. Lastly, the protein expression of core targets was examined to reveal the antipyretic mechanism. RESULTS: A total of 52 lead compounds from the four bitter-cold herbs, Phellodendri Chinensis Cortex (PCC), Sophorae Flavescentis Radix (SFR), Gentianae Radix Et Rhozima (GRER) and Coptidis Rhizoma (CR), and 248 compounds-related targets were screened out with PTGS2 ranking the first. The results from molecular docking showed that 22 compounds adopted the same orientation as aspirin and had an excellent stability in the active site pocket of PTGS2. Furthermore, these herbs exerted potential therapeutic effects through 38 related pathways. On the other hand, the outcome of animal experiments showed that they could significantly attenuate the yeast-induced mice fever with dose-dependent relationship. Further experimental results demonstrated that administration of yeast suspension raised protein expression of PTGS2 significantly, which was evidently inhibited in the high or low-dose groups of GRER as well as in the low-dose group of SFR (P < 0.01) though a higher expression of PTGS2 was shown in the low-dose group of CR compared with FM group (P < 0.01). CONCLUSIONS: The bitter-cold herbs can alleviate fever response and their antipyretic effect may mainly be attributed to regulating the expression of PTGS2 after the formation of ligand-receptor/PTGS2 complexes, and their active compounds might be nominated as antipyretic lead-ligand candidates.


Subject(s)
Antipyretics/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Fever/drug therapy , Phytochemicals/therapeutic use , Animals , Antipyretics/pharmacology , Cyclooxygenase 2/metabolism , Drugs, Chinese Herbal/pharmacology , Female , Male , Medicine, Chinese Traditional , Mice , Molecular Docking Simulation , Pharmacology/methods , Phytochemicals/pharmacology
7.
J Ethnopharmacol ; 279: 113822, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-33460760

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Precise target distribution is a key issue for further appropriate applications of fangjis (formulas) with similar efficacy and herbal constituents to maximize efficacy and minimize toxicity. AIM OF THE STUDY: To develop an algorithm for investigating the differential target distributions and characteristic mechanisms of fangjis. MAIN METHODS: In this study, we proposed a Modulome-Fangjiome Association Study (MoFAS) for comparing fangjis from qi-invigorating and xue-nourishing fangjiome (represented by four fangjis: FEJ, SDT, LYG and QOL). Firstly, the database-driven target network of these 4 fangjis was constructed as qi-xue network and decomposed into modules. Then, the modular map with functional landscape were constructed based on consistency score and enrichment analysis. Finally, we employed a targeting rate (TR) matrix to assess the contribution of this fangjiome to modulome (a set of modules) and compared characteristic effect of fangjis by principal component analysis (PCA). RESULTS: A qi-xue network constituted by 579 proteins and 23 modules were constructed. In the functional landscape, 3 primary modules were mainly involved in the endocrine system and environmental adaptation. For the target distribution, SDT and QOL were more similar; the FEJ and LYG were located distant from other fangjis according to PCA. The common effects of FEJ, SDT, and QOL focused on stress response and organism development in environmental perturbation, but the FEJ was superior in regulating critical targets, primarily focusing on hormone and neurotransmitter processes. SDT and QOL were concentrated on the majority scale of the qi-xue network, especially for the mitotic cell cycle and development. LYG only targeted lymphocyte costimulation and icosanoid biosynthetic processes. CONCLUSION: In this study, for the first time, we investigated the difference in the target distribution of qi-invigorating and xue-nourishing fangjiome and provided direct evidence for the characteristic therapeutic effect of these fangjis, which may promote the precise application of fangjis and support the identification of appropriate populations.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional/methods , Algorithms , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/chemistry , Humans , Principal Component Analysis , Proteins/metabolism , Qi
8.
Front Pharmacol ; 10: 1288, 2019.
Article in English | MEDLINE | ID: mdl-31772561

ABSTRACT

Huang-Lian-Jie-Du Decoction (HLJDD) is a "Fangji" made up of well-designed Chinese herb array and widely used to treat ischemic stroke. Here we aimed to investigate pharmacological mechanism by introducing an inter-module analysis to identify an overarching view of target profile and action mode of HLJDD. Stroke-related genes were obtained from OMIM (Online Mendelian Inheritance in Man). And the potential target proteins of HLJDD were identified according to TCMsp (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform). The two sets of molecules related to stroke and HLJDD were respectively imported into STRING database to construct the stroke network and HLJDD network, which were dissected into modules through MCODE, respectively. We analyzed the inter-module connectivity by quantify "coupling score" (CS) between HLJDD-modules (H-modules) and stroke-modules (S-module) to explore the pharmacological acting pattern of HLJDD on stroke. A total of 267 stroke-related proteins and 15 S-modules, 335 HLJDD putative targeting proteins, and 13 H-modules were identified, respectively. HLJDD directly targeted 28 proteins in stroke network, majority (16, 57.14%) of which were in S-modules 1 and 4. According to the modular map based on inter-module CS analysis, H-modules 1, 2, and 8 densely connected with S-modules 1, 3, and 4 to constitute a module-to-module bridgeness, and the enriched pathways of this bridgeness with top significance were TNF signaling pathway, HIF signaling pathway, and PI3K-Akt signaling pathway. Furthermore, through this bridgeness, H-modules 2 and 4 cooperatively work together to regulate mitochondrial apoptosis against the ischemia injury. Finally, the core protein in H-module 4 account for mitochondrial apoptosis was validated by an in vivo experiment. This study has developed an integrative approach by inter-modular analysis for elucidating the "shotgun-like" pharmacological mechanism of HLJDD for stroke.

9.
Biomed Chromatogr ; 33(3): e4449, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30513133

ABSTRACT

Xuanmai Ganjie Granules (XMGJ), a widely used Chinese herbal formula in the clinic, is used for treatment of sore throats and coughs. Despite the chemical constituents having been clarifying by our previous studies, both of the metabolism and pharmacokinetic studies of XMGJ are unclear. This study aimed to explore the disposition process of XMGJ in vivo. A sensitive and selective ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was developed to analyze the absorbed components and metabolites in rat plasma and urine after oral administration of XMGJ. A total of 42 absorbed components, including 16 prototype compounds and 26 metabolites, were identified or tentatively characterized in rat plasma and urine after oral administration of XMGJ. Moreover, the pharmacokinetic studies of five compounds of XMGJ were investigated using ultra-high liquid chromatography with tandem mass spectrometry method. The results indicated that liquiritin, harpagoside, glycyrrhetic acid, liquiritigenin, formononetin and their metabolites might be the major components involved in the pharmacokinetic and metabolism process of XMGJ. This research showed a comprehensive investigation of XMGJ in vivo, which could provide a meaningful basis for further material basis and pharmacological as well as toxicological research.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal , Tandem Mass Spectrometry/methods , Administration, Oral , Animals , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacokinetics , Flavonoids/blood , Flavonoids/metabolism , Flavonoids/pharmacokinetics , Flavonoids/urine , Glycosides/blood , Glycosides/metabolism , Glycosides/pharmacokinetics , Glycosides/urine , Glycyrrhetinic Acid/blood , Glycyrrhetinic Acid/metabolism , Glycyrrhetinic Acid/pharmacokinetics , Glycyrrhetinic Acid/urine , Limit of Detection , Linear Models , Metabolome , Pyrans/blood , Pyrans/metabolism , Pyrans/pharmacokinetics , Pyrans/urine , Rats , Reproducibility of Results
10.
Zhongguo Zhong Yao Za Zhi ; 43(12): 2448-2453, 2018 Jun.
Article in Chinese | MEDLINE | ID: mdl-29950058

ABSTRACT

Chaihu Jia Longgu Muli Tang is a classical Chinese formulas treating Shaoyang syndrome complicated with Yangming syndrome according to Treatise on Febrile Diseases. This formula is used in mental disorder, nervous system, gynecologic, andrologic, and cardiovascular disease. However, its therapeutic effect on ischemia stroke and its mechanism is far from clear. In clinical practice, we have found that this formula is effective in treating ischemic stroke, which can shorten the course of the disease and reduce recurrence. The characteristics of this formula include: Shaoyang cardinal disadvantageous syndrome, mental and nervous symptoms, retained fluid punched upward syndrome and accumulation of heat in the stomach and intestines. By combining traditional Chinese medicine (TCM) pathogenesis and efficacy with modern pathology and pharmacology, we proposed that the TCM pathogenesis of stroke, which is characterized by hyperactivity of heat combining with phlegm, stasis and water drink, is consistent with syndromes and corresponding pathology targeted by Chaihu Jia Longgu Muli Tang, including the stress brain edema zone around the ischemic lesion, the increase of intracranial pressure, the excitement of sympathetic nerve, the release of monoamine neurotransmitter, the hypofunction of autonomic nervous system after stroke, and gastrointestinal stress response. Furthermore, the pharmacological mechanism of Chaihu Jia Longgu Muli Tang is concentrated on regulation the neuroendocrinology system centered by hypothalamic-pituitary-adrenal axis (HPA), participating in the process of neuron regeneration and apoptosis, oxidative stress, hyperactivity of sympathetic nerve, and inflammatory reaction. These pathological processes are consistent with the pathological changes after ischemic stroke. Therefore, Chaihu Jia Longgu Muli Tang is a key formula for treating ischemic stroke.


Subject(s)
Brain Ischemia/drug therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Protective Agents/therapeutic use , Stroke/drug therapy , Female , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System
11.
Am J Chin Med ; 46(1): 1-23, 2018.
Article in English | MEDLINE | ID: mdl-29298518

ABSTRACT

Strychnos nux-vomica L. belongs to the genus Strychnos of the family Loganiaceae and grows in Sri Lanka, India and Australia. The traditional medicinal component is its seed, called Nux vomica. This study provides a relevant and comprehensive review of S. nux-vomica L., including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology, thus providing a foundation for future studies. Up to the present day, over 84 compounds, including alkaloids, iridoid glycosides, flavonoid glycosides, triterpenoids, steroids and organic acids, among others, have been isolated and identified from S. nux-vomica. These compounds possess an array of biological activities, including effects on the nervous system, analgesic and anti-inflammatory actions, antitumor effects, inhibition of the growth of pathogenic microorganisms and regulation of immune function. Furthermore, toxicity and detoxification methods are preliminarily discussed toward the end of this review. In further research on S. nux-vomica, bioactivity-guided isolation strategies should be emphasized. Its antitumor effects should be investigated further and in vivo animal experiments should be performed alongside in vitro testing. The pharmacological activity and toxicology of strychnine [Formula: see text]-oxide and brucine [Formula: see text]-oxide should be studied to explore the detoxification mechanism associated with processing more deeply.


Subject(s)
Strychnos nux-vomica/chemistry , Strychnos nux-vomica/toxicity , Alkaloids/isolation & purification , Alkaloids/pharmacology , Analgesics , Animals , Anti-Inflammatory Agents , Antineoplastic Agents, Phytogenic , Cyclic N-Oxides/pharmacology , Cyclic N-Oxides/toxicity , Flavonoids/isolation & purification , Flavonoids/pharmacology , Humans , In Vitro Techniques , Iridoid Glycosides/isolation & purification , Iridoid Glycosides/pharmacology , Loganiaceae , Phytotherapy , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Seeds/chemistry , Strychnine/analogs & derivatives , Strychnine/pharmacology , Strychnine/toxicity
12.
Am J Chin Med ; 44(7): 1363-1378, 2016.
Article in English | MEDLINE | ID: mdl-27785943

ABSTRACT

Shaoyao-Gancao Tang (SGT) is one of the most frequently used compound formulas in the treatment of pain-related diseases in the medical practice of traditional Chinese medicine (TCM). To investigate the anti-inflammatory and antinociceptive effects, as well as to uncover the molecular mechanism of SGT, the rat pain model of arthritis was experimentally induced by single unilateral injection of rats' left hind paw with Freund's complete adjuvant (FCA). SGT was orally administered to the rats daily at three doses individually for a period of 16 days post-model induction. Swollen degrees and pain thresholds of the rats in different groups were measured for evaluation of the anti-inflammatory and anti-nociceptive effects of SGT. Furthermore, the mRNA and protein expression levels of transient receptor potential ion channel protein vanilloid receptor 1 (TRPV1) channel as well as its calcium-mediating function in the isolated DRG neurons were further detected to provide indexes for exploration of the molecular mechanisms mediating anti-arthritic activities of SGT. As a result, FCA injection induced significant allodynia, inflammation and edema, accompanied by a significant increase in both expression and calcium-mediating function of the TRPV1 channel. Pharmacologically, oral administration of SGT at a high or middle dose demonstrated a significant relief from the above-mentioned pathological conditions in a dose-dependent manner. Simultaneously the mRNA and protein expressional levels of TRPV1 channel, as well as its calcium-mediating function, were down-regulated greatly. These findings suggest that SGT possesses a significant analgesic and anti-inflammatory effect on arthritis rats; its therapeutic activities might be achieved through reversing the elevated expression and function of TRPV1 channel evoked by FCA.


Subject(s)
Arthritis, Experimental/complications , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Pain/drug therapy , Pain/etiology , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Administration, Oral , Analgesics/administration & dosage , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/immunology , Calcium/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Freund's Adjuvant/immunology , Gene Expression/drug effects , Male , Phytotherapy , RNA, Messenger/metabolism , Rats, Sprague-Dawley
13.
J Ethnopharmacol ; 189: 361-85, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27377337

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume (Orchidaceae) is commonly called Tian ma in Chinese and mainly distributed in the mountainous areas of eastern Asia, such as China, Korea, Japan and India. It is an extensively used traditional Chinese herbal medicine in the clinical practice of traditional Chinese medicine, to treat headache, migraine, dizziness, epilepsy, infantile convulsion, tetany and so on. The present paper reviews the advancements in investigation of botany and ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Gastrodia elata Blume. Finally, the possible tendency and perspective for future investigation of this plant are also put forward. MATERIALS AND METHODS: The information on Gastrodia elata Blume was collected via piles of resources including classic books about Chinese herbal medicine, and scientific databases including Pubmed, Google Scholar, ACS, Web of science, ScienceDirect databases, CNKI and others. Plant taxonomy was validated by the databases "The Plant List", and "Mansfeld's Encyclopedia". RESULTS: Over 81 compounds from this plant have been isolated and identified, phenolics and polysaccharides are generally considered as the characteristic and active constituents of Gastrodia elata Blume. Its active compounds possess wide-reaching biological activities, including sedative, hypnotic, antiepileptic, anticonvulsive, antianxietic, antidepressant, neuroprotective, antipsychotic, anti-vertigo, circulatory system modulating, anti-inflammationary, analgesic, antioxidative, memory-improving and antiaging, antivirus and antitumor effects. CONCLUSION: Despite the publication of various papers on Gastrodia elata Blume, there is still, however, the need for definitive research and clarification of other bioactive compounds using bioactivity-guided isolation strategies, and the possible mechanism of action as well as potential synergistic or antagonistic effects of multi-component mixtures derived from Gastrodia elata Blume need to be evaluated. It is also necessary and important to do more quality control and toxicological study on human subjects in order to maintain its efficacy stable in the body and validate its safety in clinical uses. In addition, more investigations on other parts of this plant beyond the tubers are needed. Further studies on Gastrodia elata Blume will lead to the development of new drugs and therapeutics for various diseases, and how to utilize it better should be paid more attention to.


Subject(s)
Ethnopharmacology , Gastrodia/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Rhizome/chemistry , Animals , Disease Models, Animal , Ethnobotany , Humans , Medicine, Traditional , Phytochemicals/isolation & purification , Phytochemicals/therapeutic use , Phytochemicals/toxicity , Phytotherapy , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Plants, Medicinal , Risk Assessment , Toxicity Tests
14.
J Ethnopharmacol ; 188: 234-58, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27154405

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng (Burk.) F.H. Chen is a widely used traditional Chinese medicine known as Sanqi or Tianqi in China. This plant, which is distributed primarily in the southwest of China, has wide-ranging pharmacological effects and can be used to treat cardiovascular diseases, pain, inflammation and trauma as well as internal and external bleeding due to injury. AIMS OF THE REVIEW: This paper provides up-to-date information on investigations of this plant, including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology. The possible uses and perspectives for future investigation of this plant are also discussed. MATERIALS AND METHODS: The relevant information on Panax notoginseng (Burk.) F.H. Chen was collected from numerous resources, including classic books about Chinese herbal medicine, and scientific databases, including Pubmed, SciFinder, ACS, Ebsco, Elsevier, Taylor, Wiley and CNKI. RESULTS: More than 200 chemical compounds have been isolated from Panax notoginseng (Burk.) F.H. Chen, including saponins, flavonoids and cyclopeptides. The plant has pharmacological effects on the cardiovascular system, immune system as well as anti-inflammatory, anti-atherosclerotic, haemostatic and anti-tumour activities, etc. CONCLUSIONS: Panax notoginseng is a valuable traditional Chinese medical herb with multiple pharmacological effects. This review summarizes the botany, ethnopharmacology, phytochemistry, pharmacology and toxicology of P. notoginseng, and presents the constituents and their corresponding chemical structures found in P. notoginseng comprehensively for the first time. Future research into its phytochemistry of bio-active components should be performed by using bioactivity-guided isolation strategies. Further work on elucidation of the structure-function relationship among saponins, understanding of multi-target network pharmacology of P. notoginseng, as well as developing its new clinical usage and comprehensive utilize will enhance the therapeutic potentials of P. notoginseng.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Panax/chemistry , Phytochemicals/therapeutic use , Animals , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/isolation & purification , Ethnobotany , Ethnopharmacology , Humans , Medicine, Chinese Traditional , Panax/adverse effects , Phytochemicals/adverse effects , Phytochemicals/isolation & purification , Phytotherapy , Plants, Medicinal , Risk Assessment , Toxicity Tests
15.
Yao Xue Xue Bao ; 50(7): 836-41, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26552144

ABSTRACT

To further uncover the scientific significance and molecular mechanism of the Chinese herbs with pungent hot or warm natures, endogenous and exogenous expression systems were established by isolation of dorsal root ganglion (DRG) neurons and transfection of HEK293 cells with TRPV1 channel gene separately. On this basis, the regulation action of capsaicin, one main ingredient from chili pepper, on TRPV1 channel was further explored by using confocal microscope. Besides, the three-sites one-unit technique and method were constructed based on the brown adipose tissue (BAT), anal and tail skin temperatures. Then the effect of capsaicin on mouse energy metabolism was evaluated. Both endogenous and exogenous TRPV1 channel could be activated and this action could be specifically blocked by the TRPV1 channel inhibitor capsazepine. Simultaneously, the mice's core body temperature and BAT temperature fall down and then go up, accompanied by the increase of temperature of the mice's tail skin. Promotion of the energy metabolism by activation of TRPV1 channel might be the common way for the pungent-hot (warm) herbs to demonstrate their natures.


Subject(s)
Capsaicin/analogs & derivatives , Plants, Medicinal/chemistry , TRPV Cation Channels/physiology , Thermogenesis , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/physiology , Animals , Capsaicin/pharmacology , Energy Metabolism , Ganglia, Spinal/cytology , HEK293 Cells , Humans , Mice , Neurons/drug effects , Neurons/physiology , Temperature
16.
Chin J Nat Med ; 12(2): 89-102, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24636058

ABSTRACT

Siraitia grosvenorii is a perennial herb endemic to Guangxi province of China. Its fruit, commonly known as Luo hanguo, and has been used for hundreds of years as a natural sweetener and as a traditional medicine for the treatment of pharyngitis, pharyngeal pain, as well as an anti-tussive remedy in China. Based on ninety-three literary sources, this review summarized the advances in chemistry, biological effects, and toxicity research of S. grosvenorii during the past 30 years. Several different classes of compounds have been isolated or detected from various parts of S. grosvenorii, mainly triterpenoids, flavonoids, polysaccharides, amino acids, and essential oils. Various types of extracts or individual compounds derived from this species exhibited a wide array of biological effects e.g. anti-tussive, phlegm-relieving, anti-oxidant, immunomodulatory, liver-protecting, glucose-lowering, and anti-microbial. The existing research has shown that extracts and individual compounds from S. grosvenorii are basically non-toxic. Finally, some suggestions for further research on specific chemical and pharmacological properties of S. grosvenorii are proposed in this review.


Subject(s)
Cucurbitaceae/chemistry , Plant Extracts/pharmacology , Amino Acids , Animals , Flavonoids , Humans , Polysaccharides , Triterpenes
17.
Chin J Integr Med ; 19(11): 826-35, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23754163

ABSTRACT

OBJECTIVE: To explore the pathological mechanisms of Guizhi Decoction () syndrome and the therapeutic molecular mechanisms of the Guizhi Decoction, Mahuang Decoction (), Sangju Decoction ( ) and Yinqiao Powder (), as well as the potentially biological basis that Guizhi Decoction is most effective only for the patients with Guizhi Decoction syndrome in clinical practice. METHODS: We first got serum samples from the patients suffering from both upper respiratory tract infection and Guizhi Decoction syndrome identified by the doctors of Chinese medicine (CM) in the clinic. Four formulas with therapeutic actions of pungent warmth or pungent coolness for superficial syndromes were chosen and four kinds of rat serum samples each containing one of the above-mentioned herbal formulas were collected, then the effects of Guizhi Decoction syndromes' patient serum as well as the effects of sera containing the formulas after being stimulated by the patient serum samples on both the mRNA expression of certain toll-like receptor (TLR) subtypes and the release of some inflammatory cytokines in RAW264.7 cells were tested and analyzed in vitro. RESULTS: The expression of TLR-3, TLR-4 and TLR-9 mRNA among the 9 tested TLR subforms were up-regulated in the macrophages stimulated by the sera from untreated upper respiratory infection patients with the Guizhi Decoction syndrome (symptomcomplex). The products such as interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-ß from stimulated macrophages through TLR signaling pathways were also increased correspondingly. Interestingly, the changes induced by the Guizhi Decoction syndrome patients' sera were masked significantly after the macrophages were incubated with the sera from donors treated with Guizhi Decoction. Similarly, the three other exterior-releasing formulas were all effective in reversing the up-regulated changes of certain TLR subforms to different degrees, but both the number of targeted TLRs and efficacy of them seemed to be inferior to that of Guizhi Decoction. CONCLUSION: Evidence from these experiments might contribute to the scientific explanation of both the pharmacological mechanisms of Guizhi Decoction and also the CM theory that Guizhi Decoction is specifically prescribed for the treatment of Guizhi Decoction syndrome (The gearing formula to the symptom-complex).


Subject(s)
Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Toll-Like Receptors/genetics , Animals , Cell Survival/drug effects , Cell Survival/genetics , Female , Healthy Volunteers , Humans , Inflammation Mediators/metabolism , Inhibitory Concentration 50 , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Syndrome , Toll-Like Receptors/metabolism
18.
Mol Med Rep ; 7(4): 1096-102, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23358654

ABSTRACT

As a major active component in green tea, (-)-epigallocatechin 3-O-gallate (EGCG) has many anti-oxidative activities. This study investigated whether intraperitoneal administration of EGCG was capable of suppressing oxidative stress in rats with unilateral ureteral obstruction (UUO) and probed the potential mechanisms involved. In total, 150 adult male rats were randomly divided into 5 groups (n=30 each): the control group (group N); the unilateral ureteral obstruction (UUO) group (group C), where the unilateral ureter was ligated resulting in an obstructive nephropathy model; and the EGCG group (group T), following unilateral ureteral ligation, rats were intraperitoneally injected with EGCG at a dosage of 2.5 (T1), 5 (T2) and 10 mg/kg/day (T3). Each group of rats was sacrificed 72 h after surgery. We evaluated the effects of EGCG on the reactive oxygen species (ROS), reduced glutathione (GSH), oxidized glutathione (GSSG) and glutathione in the renal tissue of rats. Immunohistochemistry and western blot analysis were applied to detect nuclear factor erythoid-derived 2-related factor 2 (Nrf2) and γ-glutamylcysteine synthetase (γ-GCS) protein expression. Real-time PCR was performed to detect the mRNA levels of Nrf2 and γ-GCS. Changes in renal ultrastructure were also observed using electron microscopy. There was no significant difference in GSH, and compared with group N, ROS, GSSG and total GSH levels were much higher in the T groups (p<0.01), while much lower than those of group C (p<0.01). Protein levels of Nrf2 and γ-GCS and the mRNA levels of Nrf2 and γ-GCS notably increased in EGCG-treated rats (all p<0.05). Furthermore, electron microscopy showed that renal ultrastructure was improved in the treatment groups. Our findings suggest that, resulting from suppression of oxidative stress influenced by free radicals, EGCG exerts a protective effect on rats with obstructive nephropathy, and this anti-oxidative effect may be partly induced by activating the Nrf2 signaling pathway.


Subject(s)
Acute Kidney Injury/drug therapy , Catechin/analogs & derivatives , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Antioxidants/metabolism , Catechin/administration & dosage , Disease Models, Animal , Glutathione/metabolism , Glutathione Disulfide/metabolism , Humans , Infusions, Parenteral , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , NF-E2-Related Factor 2/genetics , Rats , Reactive Oxygen Species/metabolism , Signal Transduction
19.
Zhongguo Zhong Yao Za Zhi ; 37(16): 2501-4, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-23234157

ABSTRACT

The theory of herbal properties of traditional Chinese medicine (TCM) is an indispensable part of theoretical system of TCM and plays an important role in the clinical prescription and application of TCM. In this theoretical system, the theory of four herbal properties takes a core and dominant position and becomes an indispensable part of TCM natures and actions. In combination of studies and experience, this essay proposes the latest discovery in modern biology-modern scientific connotation of cold and hot herbal properties on the basis of cold and hot perceptions of organism on the basis of analysis and summary of TRP channel protein and correlation of cold and hot perceptions of organism and thermoregulation, which is an effective approach to make breakthroughs in studies on modernization drive of the theory of four herbal properties of TCM.


Subject(s)
Body Temperature Regulation/drug effects , Drugs, Chinese Herbal/therapeutic use , Perception/drug effects , Animals , Drug Therapy , Drugs, Chinese Herbal/chemistry , Humans , Medicine, Chinese Traditional , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
20.
Zhongguo Zhong Yao Za Zhi ; 37(9): 1274-8, 2012 May.
Article in Chinese | MEDLINE | ID: mdl-22803375

ABSTRACT

Cinnamaldehyde was shown to have significant anti-inflammatory and anti-pyretic actions in studies from both others' and our lab. Prostaglandin E2 (PGE2) plays a key role in generation of these pathological states, while PGE, synthase-1 (mPGES-1) is one of crucial biological elements in the process of PGE2 production. And as a downstream inducible terminal prostaglandin synthase of COX-2, mPGES-1 is now regarded as a more promising novel drug target than COX-2 and is attracting more and more attention from both academia and pharmaceutical industry. The purpose of present study was to further investigate the anti-inflammatory and antipyretic molecular mechanisms of cinnamaldehyde based on the mouse macrophage cell line RAW264. 7 in vitro. The PGE2 was identified by using the method of enzyme-linked immunosorbent assay (ELISA) and the expression of COX-2 and mPGES-1 at mRNA and protein levels was detected by the Real-time PCR and Western blotting methods respectively. The experimental results suggested that cinnamaldehyde could evidently reverse the increased production of PGE2induced by IL-1beta. Moreover, the up-regulated expression levels of mPGES-1 and COX-2 were significatly decreased. Together, these results provide compelling evidence that the down-regulated actions to both the production of PGE2 as well as the expression of mPGES-I might account for, at least in part, the anti-inflammatory and anti-pyretic effects of cinnamaldehyde.


Subject(s)
Acrolein/analogs & derivatives , Dinoprostone/metabolism , Interleukin-1beta/pharmacology , Intramolecular Oxidoreductases/metabolism , Macrophages/drug effects , Macrophages/metabolism , Acrolein/pharmacology , Animals , Blotting, Western , Cell Line , Mice , Prostaglandin-E Synthases , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL