Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408682

ABSTRACT

A new dicoumarin, jusan coumarin, (1), has been isolated from Artemisia glauca aerial parts. The chemical structure of jusan coumarin was estimated, by 1D, 2D NMR as well as HR-Ms spectroscopic methods, to be 7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-6-yl)oxy]-2H-chromen-2-one. As the first time to be introduced in nature, its potential against SARS-CoV-2 has been estimated using various in silico methods. Molecular similarity and fingerprints experiments have been utilized for 1 against nine co-crystallized ligands of COVID-19 vital proteins. The results declared a great similarity between Jusan Coumarin and X77, the ligand of COVID-19 main protease (PDB ID: 6W63), Mpro. To authenticate the obtained outputs, a DFT experiment was achieved to confirm the similarity of X77 and 1. Consequently, 1 was docked against Mpro. The results clarified that 1 bonded in a correct way inside Mpro active site, with a binding energy of -18.45 kcal/mol. Furthermore, the ADMET and toxicity profiles of 1 were evaluated and showed the safety of 1 and its likeness to be a drug. Finally, to confirm the binding and understand the thermodynamic characters between 1 and Mpro, several molecular dynamics (MD) simulations studies have been administered. Additionally, the known coumarin derivative, 7-isopentenyloxycoumarin (2), has been isolated as well as ß-sitosterol (3).


Subject(s)
Artemisia , Coronavirus 3C Proteases , Coumarins , Protease Inhibitors , SARS-CoV-2 , Artemisia/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coumarins/chemistry , Coumarins/pharmacology , Dicumarol/chemistry , Dicumarol/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
2.
Molecules ; 27(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35268738

ABSTRACT

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Subject(s)
Artemisia , Coronavirus 3C Proteases , Flavonoids , SARS-CoV-2 , Animals , Humans , Male , Rats , Artemisia/chemistry , Artemisia/metabolism , Binding Sites , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , COVID-19/pathology , COVID-19/virology , Density Functional Theory , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/metabolism , Flavonoids/pharmacology , Lethal Dose 50 , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/enzymology , SARS-CoV-2/isolation & purification , Skin/drug effects , Skin/pathology
3.
Molecules ; 27(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35209006

ABSTRACT

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of -18.86 and -18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.


Subject(s)
Artemisia/chemistry , COVID-19/enzymology , Chromones/chemistry , Coronavirus Papain-Like Proteases , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Humans , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL