Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Environ Res ; 231(Pt 2): 116224, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224942

ABSTRACT

Global concern about petroleum hydrocarbon pollution has intensified and gained scientific interest due to its noxious nature, high persistence in environmental matrices, and low degradability. One way to address this is by combining remediation techniques that could overcome the constraints of traditional physio-chemical and biological remediation strategies. The upgraded concept of bioremediation to nano-bioremediation in this direction offers an efficient, economical, and eco-friendly approach to mitigate petroleum contaminants. Here, we review the unique attributes of different types of nanoparticles and their synthesis procedures in remediating various petroleum pollutants. This review also highlights the microbial interaction with different metallic nanoparticles and their consequential alteration in microbial as well as enzymatic activity which expedites the remediating process. Besides, the latter part of the review explores the application of petroleum hydrocarbon degradation and the application of nano supports as immobilizing agents for microbes and enzymes. Further, the challenges and the future prospects of nano-bioremediation have also been discussed.


Subject(s)
Environmental Pollutants , Petroleum Pollution , Petroleum , Soil Pollutants , Biodegradation, Environmental , Petroleum/metabolism , Hydrocarbons , Soil Microbiology
2.
Chem Biodivers ; 20(1): e202200572, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36574478

ABSTRACT

Taxus wallichiana Zucc. is a high valued medicinal plant and has been mainly studied for its anti-cancer properties. However, research on its other important biological activities, such as its antimicrobial potential, still needs attention. The focus of the present study is to investigate the antimicrobial activity of secondary metabolites of T. wallichiana needles against 3 different groups of microorganisms, i. e., bacteria, actinobacteria, and fungi. Bioactive compounds from T. wallichiana needles were separated through column chromatography, and, TLC-bioautography. Mobile phases were optimized using Snyder's selectivity triangle. Antimicrobial spots were fractionated and compounds were identified by gas chromatography-mass spectroscopy (GC/MS) and liquid chromatography-mass spectrometry (LC/MS). Functional groups were characterized using Fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance (NMR) was used to identify the molecular structures. GC/MS and LC/MS data analysis confirm the presence of fatty acids (arachidic acid, behenic acid, palmitic acid, and stearic acid), vitamins (nicotinamide), and alkaloids (cinchonine, timolol), aminobenzamides (procainamide), carbocyclic sugar (myoinositol), and alkane hydrocarbon (hexadecane), having antimicrobial activity in the needles of T. wallichiana. To the best of our knowledge, this is the first report on the isolation and characterization of antimicrobial compounds from the needles of Taxus wallichiana (Himalayan yew). The data obtained from the present study will be supportive to the new drug discoveries in modern medicine with various combinations of medicinal plant's active constituents that can be used for curing many diseases.


Subject(s)
Alkaloids , Anti-Infective Agents , Plants, Medicinal , Taxus , Taxus/chemistry , Alkaloids/chemistry , Chromatography, Liquid , Anti-Infective Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL