Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Ethnopharmacol ; 304: 116049, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36529251

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis (SB) is a traditional Chinese medicine (TCM). In the clinical application of TCM, SB has been divided into two specifications (Ziqin and Kuqin) for a long time. At present, the Chinese Pharmacopoeia Commission no longer distinguishes between the two. However, the two specifications of medicinal materials and pieces are still in circulation in the market. AIM OF THE STUDY: This work aimed at investigating the similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities and their material basis. It will provide a new angle for relevant regulations to formulate the specifications and standards of SB. MATERIALS AND METHODS: Here we investigated the similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities related to four zebrafish models and three chemical tests. The chemical fingerprints of SB (Ziqin and Kuqin) were profiled by HPLC. Meanwhile, UHPLC-Q-TOF/MS was used to identify the chemical constituents of Ziqin and Kuqin. The main effect-related compounds of SB, Ziqin, and Kuqin were screened out by spectrum-effect relationship. Finally, six monomeric compounds were validated experimentally using the zebrafish inflammation model induced by CuSO4. RESULTS: Both Ziqin and Kuqin had significant anti-inflammatory, analgesic, and antioxidant activities. Kuqin had better anti-inflammatory and analgesic activities, while Ziqin had better antioxidant activity. HPLC fingerprint and UHPLC-Q-TOF/MS evaluation showed that the chemical composition types and main components of Ziqin and Kuqin were basically the same, while the contents and proportions of chemical components in Ziqin and Kuqin were different. By spectrum-effect relationship, compounds X1, X2 (luteoloside), X3, X4 (baicalin), X6 (wogonoside), X7 (baicalein), X8 (wogonin), and X9 (oroxylin A) were the same active chemical constituents of Ziqin and Kuqin. The core components of anti-inflammatory and analgesia activities in Kuqin were compounds X1, X2, X3, X5, X6, X7, X8, and X9. The antioxidant core active components of Ziqin were compounds X2, X3, X4, X6, X7, and X9. Among them, luteoloside, baicalin, wogonoside, baicalein, wogonin, and oroxylin A were validated successfully with good anti-inflammatory effects. CONCLUSIONS: This study revealed that Ziqin and kuqin have high similarity in chemical composition, but their proportions and active core components are different. This may be one of the main reasons why they have the same activity but different activity trends. These findings will help to improve the understanding of the different clinical applications of Ziqin and Kuqin, and provide a reference for the formulation of quality standards and their further research.


Subject(s)
Antioxidants , Drugs, Chinese Herbal , Animals , Antioxidants/pharmacology , Zebrafish , Drugs, Chinese Herbal/chemistry , Scutellaria baicalensis/chemistry , Chromatography, High Pressure Liquid , Anti-Inflammatory Agents, Non-Steroidal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
2.
Mini Rev Med Chem ; 22(2): 322-354, 2022.
Article in English | MEDLINE | ID: mdl-34036917

ABSTRACT

BACKGROUND: Flavonoid glucuronides are a kind of natural products presenting a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and antibacteria activities. In particular, the compound breviscapine has a notable effect on cardiocerebrovascular diseases. Several other compounds even have antitumor activity. METHODS: Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides. RESULTS: We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc. Conclusion: Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. They are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides' biological activities and mechanisms.


Subject(s)
Flavonoids , Glucuronides , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Glucuronides/metabolism , Glucuronides/pharmacology , Phytochemicals/chemistry , Plant Extracts/chemistry
3.
Am J Chin Med ; 49(6): 1369-1397, 2021.
Article in English | MEDLINE | ID: mdl-34263720

ABSTRACT

Breviscapine is one of the extracts of several flavonoids of Erigeron breviscapus. Scutellarin is the main active component of breviscapine, and the qualitative or quantitative criteria as well. Scutellarin and its analogs share a similar skeleton of the flavonoids. Breviscapine has been widely used in the treatment of cerebral infarction and its sequelae, cerebral thrombus, coronary heart disease (CHD), and angina pectoris. Breviscapine has a broad spectrum of pharmacological activities, such as increasing blood flow, improving microcirculation, dilating blood vessels, decreasing blood viscosity, promoting fibrinolysis, inhibiting platelet aggregation, and thrombosis formation, etc. In addition, breviscapine and its analogs have significant value for drug research and development because of the superiority of those significant bioactivities. Furthermore, an increasing number of pharmacokinetic studies have explored the mechanism of scutellarin and its analogs. To provide a comprehensive understanding of the current research on breviscapine, scutellarin, and the analogs, the structural features, distribution situation, preparation method, content determination method, clinical applications, pharmacological action as well as pharmacokinetics are summarized in the present review.


Subject(s)
Apigenin , Flavonoids , Glucuronates , Plant Extracts , Apigenin/chemistry , Apigenin/pharmacokinetics , Apigenin/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Flavonoids/pharmacology , Glucuronates/chemistry , Glucuronates/pharmacokinetics , Glucuronates/pharmacology , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacokinetics , Plant Extracts/pharmacology
4.
J Ethnopharmacol ; 268: 113571, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33181282

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sparganii Rhizoma (SR), a traditional Chinese medicine (TCM), is the rhizome of Sparganium stoloniferum Buch.-Ham. mainly distributed in East Asia. It has been used for eliminating blood stasis, promoting the flow of Qi, removing the retention of undigested food and relieving pain in China for hundreds of years. AIM OF THE REVIEW: This review summarizes comprehensive information in traditional clinical application, processing, phytochemistry, pharmacology, quality control and toxicity of SR, in exploring future scientific and therapeutic potentials. MATERIALS AND METHODS: Pertinent information was systematically collected from several electronic scientific databases (e.g., Web of Science, PubMed, China Knowledge Resource Integrated, Springer, Elsevier, ScienceDirect, and Google Scholar), PhD and MS dissertations, and classic Chinese medical books. RESULTS: SR is a gynecological drug which is often used to treat dysmenorrhea, mass in the abdomen, amenorrhea due to blood stasis, and abdominal distension in TCM. Two kinds of processed products of SR are included in Chinese Pharmacopoeia, which have better pharmacological effects than the crude herb. Approximately 180 compounds have been identified from SR, including phenylpropanoids, flavonoids, anthraquinones, organic acids, alkaloids, steroids, volatile oils, diarylheptanes, etc. The crude extracts and isolated components of SR have been reported to have anti-tumor, antithrombotic, estrogen antagonistic , anti-inflammatory, analgesic, antioxidant, anti organ fibrosis and other pharmacological activities. SR also has reproductive toxicity. CONCLUSIONS: As an important TCM, SR has been demonstrated by modern pharmacological researches to have significant bioactivities, especially on anti-tumor, antithrombotic, and estrogen antagonistic activities. These activities provide prospects for the development of new drugs and therapeutics for future applications. Nevertheless, quality control and evaluation, in-depth pharmacological mechanism, and toxicological effect of SR require further detailed research.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Ethnopharmacology/methods , Medicine, Chinese Traditional/methods , Phytochemicals/therapeutic use , Rhizome , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/toxicity , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/toxicity , Humans , Phytochemicals/chemistry , Phytochemicals/toxicity
5.
J Ethnopharmacol ; 250: 112465, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-31821851

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Curcumae Rhizoma and Sparganii Rhizoma (CR-SR) are the classical herbal couple for activating blood circulation and treating tumor in clinics. AIM OF THE STUDY: To investigate the anti-tumor activity and to clarify the bioactive ingredients of herbal couple CR-SR and the single herbs Curcumae Rhizoma (CR) and Sparganii Rhizoma (SR). MATERIALS AND METHODS: The active fractions of CR-SR decoction were fractioned by column chromatography. And isolated compounds were characterized by IR, ESI-MS, 1D and 2D-NMR techniques. Detecting linear-diarylheptanoids in CR-SR, CR and SR was realized through UPLC-LTQ-Orbitrap MSn, based on the fragmentation pathways established in this study, comparison with MS data of isolated compounds and references. The anti-tumor activities of different solvent fractions from CR-SR, CR and SR, as well as isolated ingredients were tested by CCK-8 method. RESULTS: Ultimately, a new compound (1), having a sulfonic acid group at C-3, named demethoxyshogasulfonic acid, along with another structurally similar 17 known linear-diarylheptanoids were isolated. These linear-diarylheptanoids (1-18) were divided into 12 categories based on the differences of substituents at C-3 and C-5 on the straight chain of seven carbons. Six fragmentation pathways were established by summarizing MS data of the 18 isolated compounds collected from UPLC-MS. Based on that, and retention times and MS fragmentation ions, 47 linear-diarylheptanoids were identified in CR-SR and CR, in which 12 linear-diarylheptanoids were also detected in SR. Most importantly, 5 sulfonated linear-diarylheptanoids were new compounds detected in CR and CR-SR. And the biological assay indicated that compounds 1-4 and 12-15 significantly reduced the proliferation and inhibited colony formation of MCF-7 and HepG2 cells. CONCLUSION: The new compound (1) exhibited good anti-cancer activity, which suggests that a great effort has to be paid to investigate the bioactivity of sulfonated compounds. The fractions of CR-SR decoction exhibited stronger anti-tumor activities than that of CR and SR against 5 different cancer cells. As for chemical composition, it is the first time to report that diarylheptanoids are in Sparganiaceae and the sulfonated compounds in Zingiberaceae. Moreover, the linear-diarylheptanoids found in SR which being tested to possess good anti-tumor activity, plus those compounds in CR enhance the capacity of CR-SR. It shows importance of TCM compatibility.


Subject(s)
Antineoplastic Agents/pharmacology , Curcuma , Diarylheptanoids/pharmacology , Plant Extracts/pharmacology , Rhizome , Typhaceae , Cell Line, Tumor , Humans
6.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 36(6): 718-23, 2016 Jun.
Article in Chinese | MEDLINE | ID: mdl-27491232

ABSTRACT

OBJECTIVE: To explore the effect of ligustrazine on the migration of bone marrow mesenchymal stem cells (BMSCs) and protein expressions of matrix metalloproteinase-2 and-9 (MMP-2 and MMP-9) in vitro. METHODS: BMSCs were in vitro isolated and cultured using whole bone marrow adherent method, and phenotypes [surface positive antigens (CD29 and CD90) and negative antigens (CD34 and CD45)] identified using flow cytometry. BMSCs were divided into the blank control group, 25, 50, 100 µmol/L ligustrazine group, and the GM6001 group (100 µmol/L ligustrazine +MMPs inhibitor GM6001 ). The migration of BMSCs was tested by Transwell chamber test and wound healing assay after treated with ligustrazine for 24 h. The protein expressions of MMP-2 and MMP-9 were detected by Western blot. RESULTS: The third passage BMSCs grew well in uniform morphology. The expression rate of CD29, CD90, CD34, and CD45 was 96.9%, 97.3%, 0.2%, and 3.0%, respectively. Compared with the blank control group, the number of migrated cells and relative distance of cell invasion increased, and the protein expressions of MMP-2 and MMP-9 were elevated in each ligustrazine group (P < 0.05, P < 0.01). Compared with 100 µmol/L ligustrazine group, the number of migrated cells and relative distance of cell invasion decreased in 25 and 50 µmol/L ligustrazine groups and the GM6001 group (P < 0.01). Protein expression of MMP-2 decreased in 25 and 50 µmol/L ligustrazine groups (P < 0.01). CONCLUSION: Ligustrazine could promote the migration of BMSCs in vitro, and its mechanism might be related to up-regulating expression levels of MMP-2 and MMP-9 protein.


Subject(s)
Cell Movement , Hematopoietic Stem Cells/drug effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Pyrazines/pharmacology , Cells, Cultured , Hematopoietic Stem Cells/cytology , Humans , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL