Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Mikrochim Acta ; 191(5): 286, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38652378

ABSTRACT

A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.


Subject(s)
Metal Nanoparticles , Plants, Edible , Plants, Medicinal , Silver , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Plants, Medicinal/chemistry , Silver/chemistry , Plants, Edible/chemistry , Limit of Detection , Phytochemicals/analysis , Phytochemicals/chemistry , Reproducibility of Results , Alkaloids/analysis
2.
Plant Commun ; 4(3): 100547, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36635965

ABSTRACT

Plants program their meristem-associated developmental switches for timely adaptation to a changing environment. Potato (Solanum tuberosum L.) tubers differentiate from specialized belowground branches or stolons through radial expansion of their terminal ends. During this process, the stolon apex and closest axillary buds enter a dormancy state that leads to tuber eyes, which are reactivated the following spring and generate a clonally identical plant. The potato FLOWERING LOCUS T homolog SELF-PRUNING 6A (StSP6A) was previously identified as the major tuber-inducing signal that integrates day-length cues to control the storage switch. However, whether some other long-range signals also act as tuber organogenesis stimuli remains unknown. Here, we show that the florigen SELF PRUNING 3D (StSP3D) and FLOWERING LOCUS T-like 1 (StFTL1) genes are activated by short days, analogously to StSP6A. Overexpression of StSP3D or StFTL1 promotes tuber formation under non-inductive long days, and the tuber-inducing activity of these proteins is graft transmissible. Using the non-tuber-bearing wild species Solanum etuberosum, a natural SP6A null mutant, we show that leaf-expressed SP6A is dispensable for StSP3D long-range activity. StSP3D and StFTL1 mediate secondary activation of StSP6A in stolon tips, leading to amplification of this tuberigen signal. StSP3D and StFTL1 were observed to bind the same protein partners as StSP6A, suggesting that they can also form transcriptionally active complexes. Together, our findings show that additional mobile tuber-inducing signals are regulated by the photoperiodic pathway.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/metabolism , Transcription Factors/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism
3.
Plant J ; 113(2): 402-415, 2023 01.
Article in English | MEDLINE | ID: mdl-36562774

ABSTRACT

Photoperiod plays a critical role in controlling the formation of sexual or vegetative reproductive organs in potato. Although StPHYF-silenced plants overcome day-length limitations to tuberize through a systemic effect on tuberigen StSP6A expression in the stolon, the comprehensive regulatory network of StPHYF remains obscure. Therefore, the present study investigated the transcriptomes of StPHYF-silenced plants and observed that, in addition to known components of the photoperiodic tuberization pathway, florigen StSP3D and other flowering-related genes were activated in StPHYF-silenced plants, exhibiting an early flowering response. Additionally, grafting experiments uncovered the long-distance effect of StPHYF silencing on gene expression in the stolon, including the circadian clock components, flowering-associated MADSs, and tuberization-related regulatory genes. Similar to the AtFT-AtAP1 regulatory module in Arabidopsis, the present study established that the AP1-like StMADS1 functions downstream of the tuberigen activation complex (TAC) and that suppressing StMADS1 inhibits tuberization in vitro and delays tuberization in vivo. Moreover, the expression of StSP6A was downregulated in StMADS1-silenced plants, implying the expression of StSP6A may be feedback-regulated by StMADS1. Overall, these results reveal that the regulatory network of StPHYF controls flowering and tuberization and targets the crucial tuberization factor StMADS1 through TAC, thereby providing a better understanding of StPHYF-mediated day-length perception during potato reproduction.


Subject(s)
Arabidopsis , Phytochrome , Solanum tuberosum , Phytochrome/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum tuberosum/metabolism , Transcriptome , Plant Tubers/metabolism , Plant Leaves/metabolism , Photoperiod , Arabidopsis/genetics , Reproduction , Gene Expression Regulation, Plant/genetics
4.
Front Pharmacol ; 13: 949757, 2022.
Article in English | MEDLINE | ID: mdl-36569314

ABSTRACT

Aß25-35-induced PC12 cells were used as the in vitro injury model to evaluate the effects on PC12 cells after intervention with the "ginseng-polygala" drug pair. The results showed that the drug pair could significantly increase cell activity and reduce the level of reactive oxygen species and the concentration of inflammatory factors to improve the Alzheimer's disease treatment process. Furthermore, to rapidly identify and classify complicated bioactive components of the drug pair, a liquid chromatography with quadrupole time-of-flight mass spectrometry method combined with a molecular network strategy was established. With this strategy, 40 constituents were preliminarily identified and a database of the compounds was successfully established. Among them, 12 compounds of different categories were accurately identified by comparison with reference substances. The content of the aforementioned active components was simultaneously determined by HPLC to control the quality of compatible medicinal materials, and the verification results of the analytical method met the content determination requirements. The results revealed that after compatibility, the content change of the components is not the simple addition of quantity but the comprehensive effect of the two medicines. In conclusion, this study could provide a generally applicable strategy for pharmacological activity, structural identification, and content determination in traditional Chinese medicine and its compatibility.

5.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012392

ABSTRACT

SELF-PRUNING 6A (SP6A), a homolog of FLOWERING LOCUS T (FT), has been identified as tuberigen in potato. StSP6A is a mobile signal synthesized in leaves and transmitted to the stolon through phloem, and plays multiple roles in the growth and development of potato. However, the global StSP6A protein interaction network in potato remains poorly understood. In this study, BK-StSP6A was firstly used as the bait to investigate the StSP6A interaction network by screening the yeast two-hybrid (Y2H) library of potato, resulting in the selection of 200 independent positive clones and identification of 77 interacting proteins. Then, the interaction between StSP6A and its interactors was further confirmed by the Y2H and BiFC assays, and three interactors were selected for further expression analysis. Finally, the expression pattern of Flowering Promoting Factor 1.1 (StFPF1.1), No Flowering in Short Days 1 and 2 (StNFL1 and StNFL2) was studied. The three genes were highly expressed in flowers or flower buds. StFPF1.1 exhibited an expression pattern similar to that of StSP6A at the stolon swelling stages. StPHYF-silenced plants showed up-regulated expression of StFPF1.1 and StSP6A, while expression of StNFL1 and StNFL2 was down-regulated in the stolon. The identification of these interacting proteins lays a solid foundation for further functional studies of StSP6A.


Subject(s)
Solanum tuberosum , Flowers/metabolism , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Solanum tuberosum/metabolism
6.
Biomed Pharmacother ; 152: 113254, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691159

ABSTRACT

Sang Xing decoction (SXD) is a typical prescription for treating "warm dryness" in traditional Chinese medicine (TCM), which is equivalent to respiratory diseases such as acute bronchitis in modern medicine. However, its mechanism of action remains unclear. In this study, the representative components of SXD were characterized using liquid chromatography-tandem mass spectrometry (LC-MS). The key targets, signaling pathways, and metabolic pathways associated with SXD in the treatment of acute bronchitis were identified via network prediction and metabolomics. A rat model of acute bronchitis was also established using mixed smoke, systematic in vivo experiments such as histopathological analyses, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, immunohistochemistry and western blotting were conducted to evaluate the network prediction results. An in-depth analysis of the targeted quantitative results was performed using the SIMCA software and MetaboAnalyst website. The results revealed that 50 active compounds and 45 key targets were screened and clustered with 20 approved drugs. The NF-κB signaling pathway, oxidative stress, and glutamine metabolism were associated with the therapeutic mechanism of SXD in acute bronchitis. In vivo experiments showed that SXD may maintain the production of inflammatory factors by regulating the PI3K/Akt/NF-κB signaling pathway, improving the metabolism of glutamine and glutamate to reduce oxidative stress, and inhibiting apoptosis. Simultaneously, the possibility of using SXD as an adjuvant drug for COVID-19 treatment was also revealed. This research will lay the foundation for the modern clinical application of SXD and promote the promotion and innovation of TCM.


Subject(s)
Bronchitis , COVID-19 Drug Treatment , Drugs, Chinese Herbal , Animals , Bronchitis/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Glutamine , Humans , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases , Rats , Smoke
7.
Mar Drugs ; 20(3)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35323458

ABSTRACT

Alginate oligosaccharides (AOS) have many biological activities and significant applications in prebiotics, nutritional supplements, and plant growth development. Alginate lyases have unique advantages in the preparation of AOS. However, only a limited number of alginate lyases have been so far reported to have potentials in the preparation of AOS with specific degrees of polymerization. Here, an alginate-degrading strain Pseudoalteromonasarctica M9 was isolated from Sargassum, and five alginate lyases were predicted in its genome. These putative alginate lyases were expressed and their degradation products towards sodium alginate were analyzed. Among them, AlyM2 mainly generated trisaccharides, which accounted for 79.9% in the products. AlyM2 is a PL6 lyase with low sequence identity (≤28.3%) to the characterized alginate lyases and may adopt a distinct catalytic mechanism from the other PL6 alginate lyases based on sequence alignment. AlyM2 is a bifunctional endotype lyase, exhibiting the highest activity at 30 °C, pH 8.0, and 0.5 M NaCl. AlyM2 predominantly produces trisaccharides from homopolymeric M block (PM), homopolymeric G block (PG), or sodium alginate, with a trisaccharide production of 588.4 mg/g from sodium alginate, indicating its promising potential in preparing trisaccharides from these polysaccharides.


Subject(s)
Alginates/chemistry , Bacterial Proteins , Polysaccharide-Lyases , Pseudoalteromonas/enzymology , Sargassum/microbiology , Trisaccharides/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Pseudoalteromonas/genetics , Pseudoalteromonas/isolation & purification , RNA, Ribosomal, 16S
8.
Plant Physiol ; 189(3): 1677-1693, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35258599

ABSTRACT

Potato (Solanum tuberosum L.) maturity involves several important traits, including the onset of tuberization, flowering, leaf senescence, and the length of the plant life cycle. The timing of flowering and tuberization in potato is mediated by seasonal fluctuations in photoperiod and is thought to be separately controlled by the FLOWERING LOCUS T-like (FT-like) genes SELF-PRUNING 3D (StSP3D) and SELF-PRUNING 6A (StSP6A). However, the biological relationship between these morphological transitions that occur almost synchronously remains unknown. Here, we show that StABI5-like 1 (StABL1), a transcription factor central to abscisic acid (ABA) signaling, is a binding partner of StSP3D and StSP6A, forming an alternative florigen activation complex and alternative tuberigen activation complex in a 14-3-3-dependent manner. Overexpression of StABL1 results in the early initiation of flowering and tuberization as well as a short life cycle. Using genome-wide chromatin immunoprecipitation sequencing and RNA-sequencing, we demonstrate that AGAMOUS-like and GA 2-oxidase 1 genes are regulated by StABL1. Phytohormone profiling indicates an altered gibberellic acid (GA) metabolism and that StABL1-overexpressing plants are insensitive to the inhibitory effect of GA with respect to tuberization. Collectively, our results suggest that StABL1 functions with FT-like genes to promote flowering and tuberization and consequently life cycle length in potato, providing insight into the pleiotropic functioning of the FT gene.


Subject(s)
Solanum tuberosum , Flowers/physiology , Gene Expression Regulation, Plant , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Solanum tuberosum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
J Dairy Sci ; 105(5): 3758-3769, 2022 May.
Article in English | MEDLINE | ID: mdl-35248379

ABSTRACT

Monk fruit extract (MFE) is widely used as a sweetener in foods. In this study, the effects of the consumption of MFE-sweetened synbiotic yogurt on the lipid biomarkers and metabolism in the livers of type 2 diabetic rats were evaluated. The results revealed that the MFE-sweetened symbiotic yogurt affected the phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerol, lysophosphatidic acids, lysophosphatidylcholines, lysophosphatidylethanolamines, lysophosphatidylglycerols, lysophosphatidylinositols, lysophosphatidylserines, and fatty acid-hydroxy fatty acids biomarkers in the livers of type 2 diabetic rats. In addition, the consumption of the MFE-sweetened synbiotic yogurt significantly altered 12 hepatic metabolites, which are involved in phenylalanine metabolism, sphingolipid metabolism, bile secretion, and glyoxylate and dicarboxylate metabolism in the liver. Furthermore, a multiomics (metabolomic and transcriptomic) association study revealed that there was a significant correlation between the MFE-sweetened synbiotic yogurt and the metabolites and genes involved in fatty acid biosynthesis, bile secretion, and glyoxylate and dicarboxylate metabolism. The findings of this study will provide new insights on exploring the function of sweeteners for improving type 2 diabetes mellitus liver lipid biomarkers.


Subject(s)
Cucurbitaceae , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rodent Diseases , Synbiotics , Animals , Biomarkers/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/veterinary , Fatty Acids/metabolism , Fruit/chemistry , Glyoxylates/metabolism , Glyoxylates/pharmacology , Lipid Metabolism , Lipids/pharmacology , Liver/metabolism , Plant Extracts/pharmacology , Rats , Rodent Diseases/metabolism , Sweetening Agents/analysis , Yogurt/analysis
10.
Pharmacol Res ; 178: 106155, 2022 04.
Article in English | MEDLINE | ID: mdl-35248699

ABSTRACT

The XELOX chemotherapy protocol that includes capecitabine and oxaliplatin is the routine treatment for colorectal cancer (CRC), but it can cause chemotherapy-related adverse events such as thrombocytopenia (TCP). To identify predictive biomarkers and clarify the mechanism of TCP susceptibility, we conducted integrative analysis using normal colorectal tissue (CRT), plasma, and urine samples collected before CRC patients received adjuvant XELOX chemotherapy. RNA-sequencing and DNA methylation arrays were performed on CRT samples, while liquid chromatography-mass spectrometry was performed on CRT, plasma, and urine samples. Differentially expressed features (DEFs) from each uni-omics analysis were then subjected to integrative analysis using Multi-Omics Factor Analysis (MOFA). Choline-deficiency in plasma and CRT was found as the most critical TCP-related feature. Based on bioinformatic analysis and literature research, we further concluded that choline-deficiency was the possible reason for most of the other TCP-related multi-omics DEFs, including metabolites representing reduced sphingolipid de novo synthesis and elevated solute carrier-mediated transmembrane transportation in CRT and plasma, DNA hypermethylation and elevated expression of genes involved in neuronal system genes. In terms of thrombocytopoiesis, these TCP-related DEFs may cause atypical maintenance and differentiation of megakaryocyte, resulting a suppressed ability of thrombocytopoiesis, making patients more susceptible to chemotherapy-induced TCP. At last, prediction models were developed and validated with reasonably good discrimination. The area under curves (AUCs) of training sets were all > 0.9, while validation sets had AUCs between 0.778 and 0.926. In conclusion, our results produced reliable marker systems for predicting TCP and promising target for developing precision treatment to prevent TCP.


Subject(s)
Antineoplastic Agents , Choline Deficiency , Colorectal Neoplasms , Leukopenia , Thrombocytopenia , Antineoplastic Agents/adverse effects , Choline , Choline Deficiency/chemically induced , Choline Deficiency/drug therapy , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil/therapeutic use , Humans , Leukopenia/chemically induced , Thrombocytopenia/chemically induced
11.
Plant J ; 109(4): 952-964, 2022 02.
Article in English | MEDLINE | ID: mdl-34837279

ABSTRACT

Phytohormones and their interactions play critical roles in Solanum tuberosum (potato) tuberization. The stimulatory role of jasmonic acid (JA) in tuber development is well established because of its significant promotion of tuber initiation and tuber bulking. However, the dynamics and potential function of JA signalling in potato tuberization remain largely unknown. The present study investigated the role of the JAZ1 subtype, a suppressor of JA signalling, in potato tuberization. Using 35S:StJAZ1-like-GUS as a reporter, we showed that JA signalling was attenuated from the bud end to the stem end shortly after tuber initiation. Overexpression of StJAZ1-like suppressed tuber initiation by restricting the competence for tuber formation in stolon tips, as demonstrated by grafting an untransformed potato cultivar to the stock of StJAZ1-like-overexpressing transgenic potato plants (StJAZ1-like ox). In addition, transcriptional profiling analysis revealed that StJAZ1-like modulates the expression of genes associated with transcriptional regulators, cell cycle, cytoskeleton and phytohormones. Furthermore, we showed that StJAZ1-like is destabilised upon treatment with abcisic acid (ABA), and the attenuated tuberization phenotype in StJAZ1-like ox plants can be partially rescued by ABA treatment. Altogether, these results revealed that StJAZ1-like-mediated JA signalling plays an essential role in potato tuberization.


Subject(s)
Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Tubers/metabolism , Repressor Proteins/metabolism , Signal Transduction , Solanum tuberosum/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots , Plants, Genetically Modified/genetics , Repressor Proteins/genetics , Solanum tuberosum/genetics , Transcription Factors/metabolism , Transcriptome
12.
Food Funct ; 11(9): 7696-7706, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32914810

ABSTRACT

Monk fruit extract (MFE) is a natural sweetener that has been used as an ingredient of food and pharmaceutical products. The effects of feeding synbiotic yogurt fortified with MFE to rats with type 2 diabetes induced by high-fat diet and streptozotocin on serum lipid levels and hepatic AMPK signaling pathway were evaluated. Results showed that oral administration of the synbiotic yogurt fortified with MFE could improve serum lipid levels, respiratory exchange rate, and heat level in type 2 diabetic rats. Transcriptome analysis showed that synbiotic yogurt fortified with MFE may affect the expression of genes involved in binding, catalytic activity, and transporter activity. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these differentially expressed genes were related to AMPK signaling pathway, linoleic acid metabolism, and α-linolenic acid metabolism. Western blotting confirmed that synbiotic yogurt fortified with MFE could activate AMPK signaling and improve the protein level of the hepatic gluconeogenic enzyme G6Pase in diabetic rats. The results indicated that MFE could be a novel sweetener for functional yogurt and related products.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cucurbitaceae , Diabetes Mellitus, Type 2/metabolism , Lipids/blood , Liver/enzymology , Synbiotics , Yogurt , Animals , Body Weight , Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/prevention & control , Gene Expression Profiling , Glucose-6-Phosphatase/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Linoleic Acid/metabolism , Male , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Plant Extracts , Rats , Respiration , Signal Transduction , Sweetening Agents , alpha-Linolenic Acid/metabolism
13.
J Dairy Sci ; 103(11): 10006-10014, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32861489

ABSTRACT

A yogurt using monk fruit extract (MFE) as a sweetener was developed. The aim of the study was to investigate the viability of using MFE to develop sweetened yogurts without the calories of added sugar. The physiochemical, rheological, microstructural, and antioxidant properties of yogurt were studied. Rheological results showed that MFE affected the yogurt fermentation process and its rheological properties. Yogurt sweetened with MFE had similar microstructural properties to yogurt sweetened with sucrose. Yogurt with MFE showed higher levels of gly-pro-p-nitroanilide and dipeptidyl peptidase IV inhibitory activities, 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity, α-glucosidase inhibitory activities, and superoxide anion radical scavenging ability compared with other yogurt samples. Results indicated that MFE could be a novel sweetener and a food antioxidant for functional yogurt and related products.


Subject(s)
Antioxidants/analysis , Food, Fortified/analysis , Plant Extracts/chemistry , Sweetening Agents/analysis , Yogurt/analysis , Chemical Phenomena , Cryoelectron Microscopy , Fermentation , Fruit/chemistry , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Rheology , Sucrose/analysis
14.
Medicine (Baltimore) ; 99(11): e19410, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32176067

ABSTRACT

BACKGROUND: Insomnia is a global public problem, which has a significant negative impact on both physical and mental health, while increasing the economic burden placed on both sufferers and society. Western medicine has a fast treatment on sleep, but it leads to side effects and strong dependence. Long Dan Xie Gan Tang(LDXGT) is a representative Chinese herbal medicine for the treatment of insomnia especially which has a bad-tempered symptom, and its effectiveness and safety has been validated clinically. However, there is yet to be any evidence-based medicine. Therefore, the effectiveness and safety of LDXGT in the treatment of insomnia are studied and systematically evaluated in this study. It will provide a theoretical support for the treatment of insomnia compared to western medicine. OBJECTIVE: The study is purposed to evaluate the effectiveness and safety of LDXGT for the treatment of insomnia. METHODS: Search was conducted for various databases including Pubmed, Chinese Biomedicine Database(CBM), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP), and Wan-fang. Randomized-controlled trials (RCTs) were identified for insomnia treatment involving LDXGT and LDXGT combined with ordinary Western medicine. The quality of literature was evaluated by Cochrane assessing tool to reduce the risk of bias. RevMan 5.3 software and STATA 12.0 software were applied to perform the meta-analysis. RESULTS: Thirteen studies involving 1181 participants were identified in this systematic review. Few studies described the details of random principle. No placebo was involved in treatment. LDXGT was compared with ordinary Western medicine in 11 trials and with LDXGT combined with conventional Western medicine in 2 trials. The results of our meta-analysis showed the relative benefits in effective rates compared with conventional western medicine. (Odds Ratio [OR]= 4.32, I = 0%,95% confidence interval CI [3.05 to 6.13], P < .00001) and recovery rate was (Odds Ratio [OR] = 2.67, I = 0%,95% confidence interval CI [2.04 to 3.48], P < .00001). In two trials, adverse events were reported, but no serious adverse effects were reported. CONCLUSION: Our systematic evaluation will provide evidence for the clinical effectiveness and safety of LDXGT in the treatment of insomnia, and the side effects of western medicine are addressed. Further trials are necessary to collect the evidence for the use of LDXGT.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Phytotherapy/methods , Sleep Initiation and Maintenance Disorders/drug therapy , Drug-Related Side Effects and Adverse Reactions , Humans
15.
J Dairy Sci ; 103(4): 3017-3024, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32089302

ABSTRACT

Xinong Saanen goat milk is a major source of milk in the Chinese dairy industry. Milk fat globule membrane (MFGM) proteomes of goat colostrum and mature milk were analyzed and compared using proteomic technology. A total of 543 and 585 proteins were identified in goat colostrum and mature milk, respectively. Functional category analyses revealed that most of the MFGM proteins in both colostrum and mature milk were related to phosphoprotein and acetylation. The biological process of translation, cellular component of extracellular exosome, and molecular function of poly(A) RNA binding were the main gene ontology annotations of both colostrum and mature milk. Pathways associated with disease and genetic information processing involved large number of proteins in colostrum and mature milk, and more metabolism-related pathways were observed in mature milk. Protein-protein interaction network analyses showed that ribosome was abundant in both colostrum and mature milk. Colostrum showed more functions associated with protein processing in the endoplasmic reticulum, whereas mature milk had more oxidative phosphorylation functions. The results could provide further understanding of the unique biological properties of MFGM proteins of goat colostrum and mature milk.


Subject(s)
Colostrum/chemistry , Glycolipids/chemistry , Glycoproteins/chemistry , Goats , Milk/chemistry , Proteome , Animals , Female , Gene Ontology , Goats/metabolism , Lipid Droplets , Membranes , Milk Proteins/analysis , Pregnancy , Tandem Mass Spectrometry
16.
J Dairy Sci ; 103(4): 2956-2968, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32089310

ABSTRACT

We developed a synbiotic yogurt using monk fruit extract as a sweetener and investigated the effects of feeding the yogurt to rats with type 2 diabetes induced by streptozotocin and a high-fat diet. The rats fed the synbiotic yogurt showed greater blood glucose regulation and a significant decrease in insulin resistance and glycosylated hemoglobin compared with rats fed yogurt sweetened with sucrose, and they showed a remarkable improvement in short-chain fatty acid levels and gut microbiota status. Liver and kidney damage was also ameliorated in the rats fed the synbiotic yogurt. Immunohistochemistry analysis showed that the synbiotic yogurt inhibited ß-cell loss compared with the control yogurt. Consuming the synbiotic yogurt helped to restore the islets of Langerhans. Our results indicated that monk fruit extract may be a good alternative to sucrose for synbiotic yogurt products in people with type 2 diabetes to delay the progression of diabetes and associated complications.


Subject(s)
Cucurbitaceae/chemistry , Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/drug effects , Plant Extracts/pharmacology , Sweetening Agents/pharmacology , Yogurt , Animals , Diet, High-Fat , Fruit/chemistry , Insulin Resistance , Liver/pathology , Male , Rats , Rats, Wistar , Synbiotics , Yogurt/analysis
17.
J Dairy Sci ; 103(2): 1164-1174, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31837799

ABSTRACT

Xinong Saanen goats are among the major dairy goats in China, and their milk is one of the major milk supplies for the Chinese dairy industry. To explore the whey proteome of Xinong Saanen goat milk, we analyzed the whey proteins of goat colostrum and mature milk using proteomic techniques. We identified a total of 314 and 524 proteins in goat colostrum and mature milk, respectively. Our data showed the first 3 functional categories of signal, disulfide bond, and secreted in both milk types. The most abundant Gene Ontology annotations in both milks were the biological process of positive regulation of extracellular regulated protein kinases (ERK)1 and ERK2 cascade; the cellular component of extracellular exosome; and the molecular function of calcium ion binding. Goat colostrum whey proteins showed more disease-related pathways, and mature milk showed more pathways associated with metabolism. Moreover, we observed several pathways involved in intestinal mucosal immunity only in colostrum. Protein-protein interaction network and module analysis revealed that complement and coagulation cascades and Staphylococcus aureus infection were significant in the whey proteins of both milks, and carbon metabolism was more common for mature milk than for colostrum. These findings could provide useful information for the use of goat milk whey proteins in the Chinese dairy industry.


Subject(s)
Colostrum/chemistry , Goats , Milk/chemistry , Whey Proteins/analysis , Animals , China , Female , Gene Ontology , Goats/genetics , Goats/metabolism , Pregnancy , Proteomics
18.
J Sci Food Agric ; 99(13): 5819-5825, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31180140

ABSTRACT

BACKGROUND: Xinong Saanen goat milk is a raw material for goat milk-based infant formula production. This study aims to analyze digestion properties of Xinong Saanen goat colostrum and mature milk by simulating infant gastrointestinal digestion. Zeta potential, particles size, protein profile and peptides composition of these two kinds of milk during the digestion process were studied. RESULTS: Zeta-potential values of the digested colostrum were lower than those of mature milk through the whole digestion. Absolute zeta potential of colostrum duodenal digestion samples showed a decrease from 16.63 ± 2.08 to 11.80 ± 2.03 mV while that of mature milk decreased sharply and then increased (P < 0.05). Colostrum had a larger particle size than mature milk and both milks showed decreased particle size with increasing digestion time but an increase for the last 30 min. Colostrum showed more high molecular weight (MW) proteins which cannot be hydrolyzed completely compared with mature milk. Digested peptides (< 10 kDa) were characterized using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The casein-derived peptides identified in digested colostrum and mature milk accounted for 76.67% and 59.53%, respectively. ß-Casein was the most abundant in colostrum while that in mature milk was αs1 -casein. Enterotoxin-binding glycoprotein PP20K, butyrophilin subfamily 1 member A1 (BTN1A1) and perilipin (PLIN) were only detected in digested mature milk. CONCLUSION: Differences in digestion properties between goat colostrum and mature milk were mainly shown in duodenal digestion phase. Data may provide useful information about utilization of goat milk for infant formula formulation. © 2019 Society of Chemical Industry.


Subject(s)
Colostrum/metabolism , Digestion , Gastrointestinal Tract/metabolism , Infant Formula/analysis , Milk/metabolism , Proteins/metabolism , Animals , Chromatography, Liquid , Colostrum/chemistry , Goats , Humans , Infant , Milk/chemistry , Models, Biological , Peptides/chemistry , Peptides/metabolism , Proteins/chemistry , Tandem Mass Spectrometry
19.
Biomed Pharmacother ; 115: 108907, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31071507

ABSTRACT

Plantaginis semen, the dried mature seed of Plantago asiatica L. or Plantago deprdssa Willd., has a prominent effect on the treatment of obesity, type 2 diabetes and lipid disorders, however, its clinical application is limited due to inadequate in-depth mechanism exploration and incomplete discussion of action targets of its in vivo. Therefore, an untargeted metabolomics approach was firstly applied to study the serum metabolic differences in mice. Metabolomics analysis was performed using ultra performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) together with multivariate statistical data analysis. The results showed that Plantaginis semen can mainly improve blood lipids, some degree in blood glucose and insulin levels in high-fat mice, in addition, the phenotype of liver and fat stained sections demonstrated remarkable results. A total of 22 metabolites involved in arachidonic acid, glycerophospholipid, glycosphingolipid, linoleate, Omega-3 fatty acid, phosphatidylinositol phosphate and tyrosine metabolisms were identified. In further, it was found that the possible mechanisms of Plantaginis semen on hyperlipidemic mice lied in the biosynthesis of thyroxine, biological effects of enzymes of phospholipase A2 activity, glucosylceramide synthase and inositol essential enzyme 1α, genes expressions of fatty acid metabolism and inflammation. Serum metabolomics revealed that Plantaginis semen could cure the organism disease via regulating multiple metabolic pathways which will be helpful for understanding the mechanism of this herb and providing references for better applications of it in clinic, even researches on other TCMs.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Plantago/chemistry , Seeds/chemistry , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Chromatography, High Pressure Liquid , Diet, High-Fat , Disease Models, Animal , Drugs, Chinese Herbal/isolation & purification , Hyperlipidemias/blood , Hyperlipidemias/metabolism , Hypolipidemic Agents/isolation & purification , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mass Spectrometry , Metabolomics , Mice, Inbred C57BL
20.
J Zhejiang Univ Sci B ; 19(10): 764-775, 2018.
Article in English | MEDLINE | ID: mdl-30269444

ABSTRACT

The present study aimed to evaluate the anti-diabetic property of peanut shell polyphenol extracts (PSPEs). Diabetic rats were oral-administrated with PSPE at doses of 50, 100, and 200 mg/kg body weight (BW) per day for 28 consecutive days, with metformin (Met) as a positive control. The results showed that, similar to the Met treatment, administration of PSPE caused significant decreases in food intake, water intake, fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and methane dicarboxylic aldehyde in serum, and significant increases in BW, insulin level, high-density lipoprotein cholesterol, superoxide dismutase, glutathione, and liver glycogen. Further, glucose tolerance was markedly improved in the PSPE-treated diabetic groups. Histopathological results showed that PSPE improved cellular structural and pathological changes in liver, kidney, and pancreatic islets. Collectively, the results indicated that the hypoglycemic effects of PSPE on high-fat diet/streptozotocin (HFD/STZ)-induced diabetes are comparable to Met, though their exact mechanism actions are still under investigation. Therefore, the current study suggests that PSPE could be a potential health-care food supplement in the management of diabetes.


Subject(s)
Arachis/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Lipids/blood , Liver/pathology , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL