Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Type of study
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Fish Physiol Biochem ; 50(3): 1315-1329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411877

ABSTRACT

Herbs and their by-products are important traditional medicines and food supplements; they provide numerous beneficial effects for animals. Consequently, probiotics are living cell organisms, nontoxic, and friendly microbes. Probiotics have numerous beneficial activities such as inhibition of pathogens, enhancement of the immune system, growth, disease resistance, improving water quality, reducing toxic effects, synthesis of vitamins, prevention of cancer, reduction of irritable bowel syndrome, and more positive responses in animals. Herbal and probiotic combinations have more active responses and produce new substances to enhance beneficial responses in animals. Herbal and probiotic mixture report is still limited applications for animals. However, the mechanisms by which they interact with the immune system and gut microbiota in animals are largely unclear. This review provides some information on the effect of herbal and probiotic blend on animals. This review discusses current research advancements to fulfill research gaps and promote effective and healthy animal production.


Subject(s)
Probiotics , Probiotics/therapeutic use , Probiotics/pharmacology , Animals , Fishes , Gastrointestinal Microbiome/drug effects , Dietary Supplements
2.
J Fish Dis ; 47(5): e13916, 2024 May.
Article in English | MEDLINE | ID: mdl-38226408

ABSTRACT

Nanotechnology is an expanding and new technology that prompts production with nanoparticle-based (1-100 nm) organic and inorganic materials. Such a tool has an imperative function in different sectors like bioengineering, pharmaceuticals, electronics, energy, nuclear energy, and fuel, and its applications are helpful for human, animal, plant, and environmental health. In exacting, the nanoparticles are synthesized by top-down and bottom-up approaches through different techniques such as chemical, physical, and biological progress. The characterization is vital and the confirmation of nanoparticle traits is done by various instrumentation analyses like UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, X-ray diffraction, atomic force microscopy, annular dark-field imaging, and intracranial pressure. In addition, probiotics are friendly microbes which while administered in sufficient quantity confer health advantages to the host. Characterization investigation is much more significant to the identification of good probiotics. Similarly, haemolytic activity, acid and bile salt tolerance, autoaggregation, antimicrobial compound production, inhibition of pathogens, enhance the immune system, and more health-beneficial effects on the host. The synergistic effects of nanoparticles and probiotics combined delivery applications are still limited to food, feed, and biomedical applications. However, the mechanisms by which they interact with the immune system and gut microbiota in humans and animals are largely unclear. This review discusses current research advancements to fulfil research gaps and promote the successful improvement of human and animal health.


Subject(s)
Anti-Infective Agents , Fish Diseases , Metal Nanoparticles , Nanoparticles , Veterinary Drugs , Humans , Animals , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology
3.
Biol Trace Elem Res ; 202(1): 360-386, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37046039

ABSTRACT

Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.


Subject(s)
Metal Nanoparticles , Plant Extracts , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry , Silver/chemistry , Nanotechnology , Metal Nanoparticles/chemistry , Green Chemistry Technology/methods , X-Ray Diffraction , Anti-Bacterial Agents
4.
Biol Trace Elem Res ; 202(3): 1264-1278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37434037

ABSTRACT

Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Zinc/pharmacology , Antioxidants , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Goldfish , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Nanoparticles/chemistry , Mucus , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/chemistry
5.
Fish Shellfish Immunol ; 128: 651-663, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36028056

ABSTRACT

A 56-day feeding trial was conducted to examine the preventive and reparative functions of host-associated probiotics against high soybean meal (SM)-induced negative effects in Japanese seabass (Lateolabrax japonicus). Fish continuously fed low SM (containing 16% SM) and high SM (containing 40% SM) diets were named as positive (PC) and negative (C) control, respectively. Preventive functions of probiotics were evaluated by continuously feeding diets LF3 (Lactococcus petauri LF3 supplemented in high SM diet, group PLF3) and LF4 (Bacillus siamensis LF4 supplemented in high SM diet, group PLF4), while reparative functions were estimated by feeding the high SM diet during 0-28 days, then feeding diets LF3 (group RLF3) and LF4 (group RLF4) until day 56. Compared with the group PC, suppressed growth and immunity, and damaged intestinal health were observed in the group C on days 28 and 56. Fish in groups PLF3 and PLF4, rather than in groups RLF3 and RLF4, showed higher growth compared with the group C and displayed similar immune status to the group PC, indicating that the initial and continued application of probiotic LF3 and LF4 can efficiently improve high SM induced growth and immune deficiency in Japanese seabass, but probiotics had limited reparative benefits when they were administrated at the middle of the feeding trial (28 d). Furthermore, probiotics showed good preventive functions and limited reparative functions on gut health via improving intestinal morphology and inflammation markers, for example, decreasing diamine oxidase activity and d-lactate content, while up-regulating anti-inflammatory TGF-ß1 expression and down-regulating pro-inflammatory TNF-α, IL-1ß, and IL-8 expressions. Moreover, dietary supplementation of probiotics (especially on day 56) could effectively shape the gut microbiota, such as significantly decreasing abundances of opportunistic pathogens (phylum Actinobacteria, genera Pseudomonas and Moheibacter on day 28, phylum Proteobacteria, genus Plesiomonas on day 56), significantly increasing gut microbial diversity and abundances of possible beneficial bacteria (phylum Bacteroidetes and genus Lactobacillus on day 28, phyla Firmicutes, Bacteroidetes and Cyanobacteria, genera Bacillus, Lactobacillus and Bacteroides on day 56). In conclusion, we evidenced for the first time that host-associated L. petauri LF3 and B. siamensis LF4 can provide effectively preventive and certain reparative functions against high SM-induced adverse effects in L. japonicus.


Subject(s)
Amine Oxidase (Copper-Containing) , Probiotics , Animal Feed/analysis , Animals , Diet/veterinary , Interleukin-8 , Lactates , Lactobacillus , Probiotics/pharmacology , Glycine max , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha
6.
Front Microbiol ; 9: 2429, 2018.
Article in English | MEDLINE | ID: mdl-30369918

ABSTRACT

Along with the intensification of culture systems to meet the increasing global demands, there was an elevated risk for diseases outbreak and substantial loss for farmers. In view of several drawbacks caused by prophylactic administration of antibiotics, strict regulations have been established to ban or minimize their application in aquaculture. As an alternative to antibiotics, dietary administration of feed additives has received increasing attention during the past three decades. Probiotics, prebiotics, synbiotics and medicinal plants were among the most promising feed supplements for control or treatments of bacterial, viral and parasitic diseases of fish and shellfish. The present review summarizes and discusses the topic of potential application of probiotics as a means of disease control with comprehensive look at the available literature. The possible mode of action of probiotics (Strengthening immune response, competition for binding sites, production of antibacterial substances, and competition for nutrients) in providing protection against diseases is described. Besides, we have classified different pathogens and separately described the effects of probiotics as protective strategy. Furthermore, we have addressed the gaps of existing knowledge as well as the topics that merit further investigations. Overall, the present review paper revealed potential of different probiont to be used as protective agent against various pathogens.

7.
Fish Shellfish Immunol ; 29(5): 803-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20637875

ABSTRACT

The effect of dietary administration of Bacillus pumilus and Bacillus clausii, the dominant bacteria with antagonistic activity in the gut of fast growing fish, on the growth performance and immune responses of grouper Epinephelus coioides were assessed. The fish were fed for 60 days with three different diets: control (without probiotics), diet T1 supplemented with 1.0x10(8) cells g(-1) B. pumilus, diet T2 with 1.0x10(8) cells g(-1) B. clausii. No significant improvements of weight gain or specific growth rate were observed in the probiotic fed groups, but a significant improvement of feed conversion ratio was observed after 60 days of feeding. Phagocytic activity and phagocytic index of fish fed probiotic diets were significantly higher than those of fish fed the control diet for 60 days. Superoxide dismutase (SOD) concentrations showed no significant difference between the treatments and the control during the whole experiment period, but which increased by 11.4% and 18.5% after 60 days of fed with diets T1 and T2, respectively. The serum lysozyme activities of fish fed diets T1 and T2 were significantly higher than that of fish fed control diet, and had respectively increased by 34.7% and 17.4% compared to the control after 60 days of feeding. Serum complement C3 levels of the treatments were significantly higher than that of control after 30 days of feeding, but no significant difference in serum complement C3 and C4 levels were observed between the treatments and the control after 60 days of feeding. The serum IgM levels of fish fed diet T1 and diet T2 were higher than that of fish fed control diet, and significant increase was observed in fish fed diet T2 for 30 days. The results demonstrated potential for B. pumilus and B. clausii to improve growth performance and immune responses of E. coioides.


Subject(s)
Aquaculture/methods , Bacillus , Bass/growth & development , Bass/immunology , Diet , Probiotics/administration & dosage , Analysis of Variance , Animals , China , Phagocytosis , Reverse Transcriptase Polymerase Chain Reaction , Superoxide Dismutase
SELECTION OF CITATIONS
SEARCH DETAIL