Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 322: 117657, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38145861

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Danlou tablet (DLT) is a traditional Chinese medicinal formulation known for replenishing Qi, promoting blood circulation, and resolving stasis. Its pharmacological actions primarily involve anti-inflammatory, antioxidant stress reduction, antiapoptotic, proangiogenic, and improved energy metabolism. DLT has been confirmed to have favorable therapeutic effects on ischemic stroke (IS). However, the underlying mechanism through which DLT affects IS-induced brain injury remains unknown. AIM OF THE STUDY: This study aims to investigate the effects and underlying mechanisms of danlou tablet on ischemic stroke based on network pharmacology and experimental verification. MATERIALS AND METHODS: Using a transient middle cerebral artery occlusion (tMCAO) mouse model, the impact of DLT on the blood‒brain barrier (BBB) and brain injury in mice was assessed. Network pharmacology and bioinformatics analyses were utilized to explore the potential mechanisms of DLT in treating IS. Endothelial cells were cultured to observe the effects of DLT on vascular endothelial cells after oxygen-glucose deprivation/reperfusion, and these findings were validated in the brains of tMCAO mice. RESULTS: DLT alleviated oxidative stress and brain damage in tMCAO mice, mitigating BBB damage. A total of 185 potential targets through which DLT regulates IS were identified, including COX2, a known critical marker of ferroptosis, which identified as a key target. In vitro and in vivo experiments demonstrated that DLT significantly (p < 0.05) improved cell death and vascular barrier damage in IS, reducing intracellular oxidative stress and COX2 protein levels while increasing SLC7A11 and GPX4 protein levels. CONCLUSIONS: This study demonstrated that DLT maintained BBB integrity and alleviated brain injury of tMCAO mice by inhibiting ferroptosis. The study partially unraveled the mechanism through which DLT functioned in treating IS and further clarified the pivotal active components of DLT, thereby providing a theoretical scientific basis for treating IS with DLT.


Subject(s)
Brain Injuries , Brain Ischemia , Drugs, Chinese Herbal , Ferroptosis , Ischemic Stroke , Reperfusion Injury , Stroke , Mice , Animals , Blood-Brain Barrier , Ischemic Stroke/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cyclooxygenase 2/metabolism , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Injuries/metabolism , Reperfusion Injury/drug therapy , Stroke/drug therapy , Stroke/metabolism
2.
Plant Dis ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700473

ABSTRACT

Dioscorea polystachya (Chinese yam) is a kind of medicine and food homologous crop, the tubers as its main production organ, with high potassium, low fiber, high protein and rich nutrition characteristics. In 2022, at the Chinese herbal medicine planting experimental site in Anguo, Baoding City, Hebei Province, China, we found the symptoms of Chinese yam decay during the storage, with an incidence of 15%~25%. The diseased part of Chinese yam tuber rots expands from the outside to the inside and sags, with a brown or dark brown discoloration, and the surface covered with a thick grayish green mold. The diseased tissue was first rinsed with clean water to remove dirts from the surface. Thereafter, 3 to 4 mm Chinese yam pieces were picked from rotting edge with a sterilized forceps, sterilized with 75% alcohol for 30 s followed by 0.1% mercuric chloride solution for 1min, and then rinsed three times with sterile water. The sterilized pieces were cultured on potato dextrose agar (PDA). One isolated fungus was obtained, and conidia were observed after incubation for 5 days at 26°C. Pure cultures were isolated by single-spore isolation. Conidia were single spore, round or oval, colorless. Conidiophores produce several rounds of symmetric or asymmetric small stems after multiple branches, which were shaped like brooms. The length and width of 100 conidia were measured, and size ranged from 3 to 4×3 to 4 µm. On the basis of morphological characteristics, the isolate was identified as Penicillium spp. (Uy et al. 2022). To further assess the identity of isolated species, the genomic DNA of the fungal isolate (SYRF1) was extracted by CTAB protocol. The ribosomal DNA internal transcribed spacer (ITS) region and the ribosomal large subunit (LSU) were amplified and sequenced with primers ITS1/4, LR5/LROR respectively (White et al. 1990, Xu et al. 2010). The obtained ITS-rDNA region and LSU sequences (GenBank accession OQ707937 and OQ704185) of the isolate were more than 99% identity to the corresponding sequences of Penicillium cellarum in GenBank (KM249068 and MG714818). Phylogenetic results based on a maximum-likelihood analysis revealed that SYRF1 was grouped with P. cellarum. To determine the pathogenicity of the isolated fungi, tests were carried out by aseptic inoculation of fresh and healthy tubers. Before the experiment, the healthy tubers were washed, surface disinfected and dried. The tubers were then wounded with sterile inoculation needles, and the conidium-bearing hyphal discs (5 mm) were inoculated on the surface of the wounded tubers and covered with wet sterile cotton. Three tubers were inoculated repeatedly each time as the experimental group. Inoculate sterile PDA with three tubers as the control group. Each tuber was inoculated with four mycelium disks, and the pathogenicity test was repeated four times. The inoculated tubers were incubated at 26°C for 14 days with sterile PDA as control. After ten days, the inoculated points showed symptoms similar to those of the initial infection, whereas controls remained symptomless. The reisolated fungus matched SYRF1 based on morphological and sequence analyses, thereby fulfilling Koch's postulates. To the best of our knowledge, this is the first report of Penicillium cellarum as causative agent of postharvest rot of Chinese yam tubers in China. This finding will help inform the prevention and management of postharvest diseases of Chinese yam tubers.

3.
Biomaterials ; 268: 120553, 2021 01.
Article in English | MEDLINE | ID: mdl-33253963

ABSTRACT

Promoting bone regeneration to treat bone defects is a challenging problem in orthopedics, and developing novel biomaterials with both osteogenic and angiogenic activities is sought as a feasible solution. Here, copper-silicocarnotite [Cu-Ca5(PO4)2SiO4, Cu-CPS] was designed and fabricated. In this study, the Cu-CPS ceramics demonstrated better mechanical, osteogenic, and angiogenic properties in vitro and in vivo than pure CPS one. Particularly, CPS with 1.0 wt% CuO (1.0Cu-CPS) exhibited the best performance. Additionally, hydroxyapatite with 1.0 wt% CuO (1.0Cu-HA) was used to explore the respective effects of copper and silicon (Si). According to the in vitro results, it indicated that Cu enhanced the osteogenic activity of CPS ceramics although Si played a dominate role in the osteogenic process. Moreover, Cu could promote an early stage of angiogenesis, and the complementary effect of Si and Cu was found in the late phase. Furthermore, the in vivo results illustrated that the synergistic effect of Cu and Si improved bone and vessel regeneration during the degradation of Cu-CPS scaffolds (P < 0.05). Therefore, Cu-CPS ceramics could improve osteogenesis and angiogenesis through the simultaneous effects of Cu and Si, thus, offering a promising treatment option in orthopedic application for bone tissue regeneration.


Subject(s)
Copper , Osteogenesis , Bone Regeneration , Calcium Phosphates , Ceramics/pharmacology , Silicates/pharmacology
4.
Nanoscale ; 10(26): 12543-12553, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29932193

ABSTRACT

Discovering highly efficient, environmentally friendly, and low-cost exfoliating media that can both disperse and protect black phosphorus (BP) remains a challenge. Herein, we demonstrate such a new molecule, N,N'-dimethylpropyleneurea (DMPU), for effective exfoliation and dispersion of two-dimensional BP nanosheets. A very high exfoliation efficiency of up to 16% was achieved in DMPU, significantly surpassing other good solvents. Exfoliated flakes are free from structural disorder or oxidation. Nanosheets retain high stability in DMPU even after addition of 25 vol% of common solvents. The solvation shell appears to protect the nanosheets from reacting with water and air, more remarkably than the best solvent N-cyclohexyl-2-pyrrolidone reported so far. Molecular dynamics simulations of the exfoliation process show that DMPU is among the effective solvents, although energetically it does not appear as favorable as some other amides. We also demonstrate that our exfoliated BP nanosheets exhibit excellent antimicrobial activities against both Escherichia coli and Staphylococcus aureus, outperforming other common two-dimensional materials of graphene and MoS2, suggesting promise in biomedical applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Nanostructures/chemistry , Phosphorus/pharmacology , Urea/analogs & derivatives , Escherichia coli/drug effects , Graphite , Molecular Dynamics Simulation , Solvents , Staphylococcus aureus/drug effects , Urea/chemistry , Water
5.
J Mol Recognit ; 30(7)2017 07.
Article in English | MEDLINE | ID: mdl-28124461

ABSTRACT

Drug-protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized ß2 -adrenoceptor (ß2 -AR) by linkage of the receptor on macroporous silica gel surface through N,N'-carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site-directed molecular docking. Subsequent application of immobilized ß2 -AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount-dependent method. The association constants of protopine to ß2 -AR by the 2 methods were (1.00 ± 0.06) × 105 M-1 and (1.52 ± 0.14) × 104 M-1 . The numbers of binding sites were (1.23 ± 0.07) × 10-7 M and (9.09 ± 0.06) × 10-7 M, respectively. These results indicated that ß2 -AR is the specific target for therapeutic action of protopine in vivo. The target-drug binding occurred on Ser169 in crystal structure of the receptor. Compared with frontal analysis, injection amount-dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high-throughput drug-receptor interaction analysis.


Subject(s)
Benzophenanthridines/pharmacology , Berberine Alkaloids/pharmacology , Drug Interactions , Receptors, Adrenergic, beta-2/chemistry , Benzophenanthridines/chemistry , Berberine Alkaloids/chemistry , Binding Sites/drug effects , Chromatography, Affinity , Humans , Imidazoles/chemistry , Molecular Docking Simulation , Molecular Targeted Therapy , Protein Binding/drug effects , Receptors, Adrenergic, beta-2/drug effects
6.
Chem Commun (Camb) ; (23): 2948-50, 2005 Jun 21.
Article in English | MEDLINE | ID: mdl-15957035

ABSTRACT

A novel and simple method to replicate biological organizations (cotton and pollen grains) with high precision was proposed, in which the precursor dissolved in supercritical CO2 reacted with the surface active groups and adsorbed surface water on biological templates, followed by in situ SCF extraction of the byproducts and unreacted precursor, resulting in inorganic replicas faithfully copying both the macro- and microstructures of the biotemplates.


Subject(s)
Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid/methods , Cotton Fiber , Pollen/chemistry , Titanium/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL