Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemistry ; 28(61): e202201997, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35938698

ABSTRACT

Chiral sulfoxides are versatile synthons and have gained a particular interest in asymmetric synthesis of active pharmaceutical and agrochemical ingredients. Herein, a linear oxidation-reduction bienzymatic cascade to synthesize chiral sulfoxides is reported. The extraordinarily stable and active vanadium-dependent chloroperoxidase from Curvularia inaequalis (CiVCPO) was used to oxidize sulfides into racemic sulfoxides, which were then converted to chiral sulfoxides by highly enantioselective methionine sulfoxide reductase A (MsrA) and B (MsrB) by kinetic resolution, respectively. The combinatorial cascade gave a broad range of structurally diverse sulfoxides with excellent optical purity (>99 %  ee) with complementary chirality. The enzymatic cascade requires no NAD(P)H recycling, representing a facile method for chiral sulfoxide synthesis. Particularly, the envisioned enzymatic cascade not only allows CiVCPO to gain relevance in chiral sulfoxide synthesis, but also provides a powerful approach for (S)-sulfoxide synthesis; the latter case is significantly unexplored for heme-dependent peroxidases and peroxygenases.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Oxidation-Reduction , Safrole
2.
Metab Eng ; 69: 15-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34715353

ABSTRACT

Phytochemicals are rich resources for pharmaceutical and nutraceutical agents. A key challenge of accessing these precious compounds can present significant bottlenecks for development. The cinnamyl alcohol disaccharides also known as rosavins are the major bioactive ingredients of the notable medicinal plant Rhodiola rosea L. Cinnamyl-(6'-O-ß-xylopyranosyl)-O-ß-glucopyranoside (rosavin E) is a natural rosavin analogue with the arabinopyranose unit being replaced by its diastereomer xylose, which was only isolated in minute quantity from R. rosea. Herein, we described the de novo production of rosavin E in Escherichia coli. The 1,6-glucosyltransferase CaUGT3 was engineered into a xylosyltransferase converting cinnamyl alcohol monoglucoside (rosin) into rosavin E by replacing the residue T145 with valine. The enzyme activity was further elevated 2.9 times by adding the mutation N375Q. The synthesis of rosavin E from glucose was achieved with a titer of 92.9 mg/L by combining the variant CaUGT3T145V/N375Q, the UDP-xylose synthase from Sinorhizobium meliloti 1021 (SmUXS) and enzymes for rosin biosynthesis into a phenylalanine overproducing E. coli strain. The production of rosavin E was further elevated by co-overexpressing UDP-xylose synthase from Arabidopsis thaliana (AtUXS3) and SmUXS, and the titer in a 5 L bioreactor with fed-batch fermentation reached 782.0 mg/L. This work represents an excellent example of producing a natural product with a disaccharide chain by glycosyltransferase engineering and artificial pathway construction.


Subject(s)
Biological Products , Escherichia coli , Biological Products/metabolism , Disaccharides/chemistry , Disaccharides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL