Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Enzyme Inhib Med Chem ; 37(1): 226-235, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34894949

ABSTRACT

Bruton tyrosine kinase (BTK) is linked to multiple signalling pathways that regulate cellular survival, activation, and proliferation. A covalent BTK inhibitor has shown favourable outcomes for treating B cell malignant leukaemia. However, covalent inhibitors require a high reactive warhead that may contribute to unexpected toxicity, poor selectivity, or reduced effectiveness in solid tumours. Herein, we report the identification of a novel noncovalent BTK inhibitor. The binding interactions (i.e. interactions from known BTK inhibitors) for the BTK binding site were identified and incorporated into a structure-based virtual screening (SBVS). Top-rank compounds were selected and testing revealed a BTK inhibitor with >50% inhibition at 10 µM concentration. Examining analogues revealed further BTK inhibitors. When tested across solid tumour cell lines, one inhibitor showed favourable inhibitory activity, suggesting its potential for targeting BTK malignant tumours. This inhibitor could serve as a basis for developing an effective BTK inhibitor targeting solid cancers.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
2.
Am J Chin Med ; 47(2): 337-350, 2019.
Article in English | MEDLINE | ID: mdl-30871360

ABSTRACT

Through population-based studies, associations have been found between coffee drinking and numerous health benefits, including a reduced risk of cardiovascular disease. Active ingredients in coffee have therefore received considerable attention from researchers. A wide variety of effects have been attributed to cafestol, one of the major compounds in coffee beans. Because cardiac hypertrophy is an independent risk factor for cardiovascular events, this study examined whether cafestol inhibits urotensin II (U-II)-induced cardiomyocyte hypertrophy. Neonatal rat cardiomyocytes were exposed only to U-II (1 nM) or to U-II (1 nM) following 12-h pretreatment with cafestol (1-10 µ M). Cafestol (3-10 µ M) pretreatment significantly inhibited U-II-induced cardiomyocyte hypertrophy with an accompanying decrease in U-II-induced reactive oxygen species (ROS) production. Cafestol also inhibited U-II-induced phosphorylation of redox-sensitive extracellular signal-regulated kinase (ERK) and epidermal growth factor receptor transactivation. In addition, cafestol pretreatment increased Src homology region 2 domains-containing phosphatase-2 (SHP-2) activity, suggesting that cafestol prevents ROS-induced SHP-2 inactivation. Moreover, nuclear factor erythroid-2-related factor 2 (Nrf2) translocation and heme oxygenase-1 (HO-1) expression were enhanced by cafestol. Addition of brusatol (a specific inhibitor of Nrf2) or Nrf2 siRNA significantly attenuated cafestol-mediated inhibitory effects on U-II-stimulated ROS production and cardiomyocyte hypertrophy. In summary, our data indicate that cafestol prevented U-II-induced cardiomycyte hypertrophy through Nrf2/HO-1 activation and inhibition of redox signaling, resulting in cardioprotective effects. These novel findings suggest that cafestol could be applied in pharmacological therapy for cardiac diseases.


Subject(s)
Cell Enlargement/drug effects , Diterpenes/pharmacology , Myocytes, Cardiac/pathology , NF-E2-Related Factor 2/metabolism , Urotensins/adverse effects , Urotensins/antagonists & inhibitors , Animals , Cardiomegaly/drug therapy , Cells, Cultured , Depression, Chemical , Diterpenes/therapeutic use , ErbB Receptors/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Heme Oxygenase-1/metabolism , Phosphorylation/drug effects , Phytotherapy , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Rats , Reactive Oxygen Species/metabolism , Transcriptional Activation/drug effects
3.
Article in English | MEDLINE | ID: mdl-24971153

ABSTRACT

This study investigated how lycopene affected urotensin-II- (U-II-) induced cardiomyocyte hypertrophy and the possible implicated mechanisms. Neonatal rat cardiomyocytes were exposed to U-II (1 nM) either exclusively or following 6 h of lycopene pretreatment (1-10 µ M). The lycopene (3-10 µ M) pretreatment significantly inhibited the U-II-induced cardiomyocyte hypertrophy, decreased the production of U-II-induced reactive oxygen species (ROS), and reduced the level of NAD(P)H oxidase-4 expression. Lycopene further inhibited the U-II-induced phosphorylation of the redox-sensitive extracellular signal-regulated kinases. Moreover, lycopene treatment prevented the increase in the phosphorylation of serine-threonine kinase Akt and glycogen synthase kinase-3beta (GSK-3 ß ) caused by U-II without affecting the protein levels of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). However, lycopene increased the PTEN activity level, suggesting that lycopene prevents ROS-induced PTEN inactivation. These findings imply that lycopene yields antihypertrophic effects that can prevent the activation of the Akt/GSK-3 ß hypertrophic pathway by modulating PTEN inactivation through U-II treatment. Thus, the data indicate that lycopene prevented U-II-induced cardiomyocyte hypertrophy through a mechanism involving the inhibition of redox signaling. These findings provide novel data regarding the molecular mechanisms by which lycopene regulates cardiomyocyte hypertrophy.

SELECTION OF CITATIONS
SEARCH DETAIL