Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Affiliation country
Publication year range
1.
Yakugaku Zasshi ; 144(4): 373-380, 2024.
Article in Japanese | MEDLINE | ID: mdl-38556310

ABSTRACT

Crude drugs and Kampo formulations derived from natural materials such as plants, animals, and minerals are multicomponent medicines that contain numerous chemical constituents. Quantitative determination of characteristic constituents for quality control is crucial for the standardization and quality assurance of natural medicines. Quantitative assays to determine marker compound contents are commonly performed using HPLC systems. In order to achieve accurate quantitative determination, it is essential to use standard materials with well-defined purities corresponding to the target analytes. Many marker compounds used as standard materials must be purified and isolated from natural products while ensuring sufficient purity. However, the composition of impurities in the standard material differs among different batches due to differences in the raw materials and their extraction, separation, and purification processes. Therefore, controlling the purity of standard materials derived from natural products is more complex than that of synthetic substances. Quantitative NMR (qNMR), which has become widely used as an absolute quantitative method for low-molecule organic compounds, makes it possible to solve these issues. qNMR has been introduced into the crude drug section of the Japanese Pharmacopoeia (JP) for evaluating the purity of standard materials used for the assay. This review outlines an example of quantitative determination using relative molar sensitivity (RMS) based on qNMR adopted in the JP and introduces the latest efforts toward the application of qNMR to standard materials used for crude drugs in this context.


Subject(s)
Biological Products , Magnetic Resonance Spectroscopy/methods , Quality Control , Chromatography, High Pressure Liquid , Medicine, Kampo
2.
Yakugaku Zasshi ; 143(11): 951-962, 2023 Nov 01.
Article in Japanese | MEDLINE | ID: mdl-37558432

ABSTRACT

Recently, a novel quantitative method using relative molar sensitivity (RMS) was applied to quantify the ingredients of drugs and foods. An important development in this regard can be observed in the Japanese Pharmacopoeia (JP) 18, where the quantification of perillaldehyde, an unstable compound, in crude drug "Perilla Herb," was revised to incorporate the RMS method. In this study, the primary objective was to improve the tester safety and reduce the amount of reagents used in the JP test. To achieve this, the quantification of three toxic Aconitum monoester alkaloids (AMAs) was explored using the RMS method, employing a single reference compound for all three targets. These AMAs, namely benzoylmesaconine hydrochloride, benzoylhypaconine hydrochloride, and 14-anisoylaconine hydrochloride, which are the quantitative compounds of Kampo extracts containing Aconite Root (AR), were quantified using the reference compound benzoic acid (BA). Reliable RMS values were obtained using both 1H-quantitative NMR and HPLC/UV. Using the RMS of three AMAs relative to the BA, the AMA content (%) in commercial AMAs quantitative reagents were determined without analytical standards. Moreover, the quantitative values of AMAs using the RMS method and the calibration curve method using the three analytical standards were similar. Additionally, similar values were achieved for the three AMAs in the Kampo extracts containing AR using the RMS and the modified JP18 calibration curve methods. These results suggest that the RMS method is suitable for quantitative assays of the Kampo extracts containing AR and can serve as an alternative to the current method specified in the JP18.


Subject(s)
Aconitum , Alkaloids , Plant Preparations , Aconitum/chemistry , Alkaloids/chemistry , Chromatography, High Pressure Liquid/methods , Plant Preparations/chemistry
3.
J Pharmacol Sci ; 135(3): 134-137, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29146480

ABSTRACT

Chotosan (CTS), a traditional herbal formula called Kampo medicine, was shown to be effective in the treatment of vascular dementia in a clinical study, and exerted protective effects against transient cerebral ischemia-induced cognitive impairment in mice. In the present study, we investigated the neuroprotective effects of CTS using primary cultured rat cortical neurons. CTS (250-1000 µg/mL) inhibited neuronal death induced by 100 µM glutamate. This glutamate-induced neuronal death was blocked by a GluN2B-, but not GluN2A-containing NMDA receptor antagonist. Therefore, the neuroprotective effects of CTS were related to an inhibition of GluN2B-containing NMDA receptor-mediated responses.


Subject(s)
Chitosan/pharmacology , Glutamic Acid/toxicity , Medicine, Kampo , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Cell Death/drug effects , Cells, Cultured , Chitosan/therapeutic use , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Dementia, Vascular/drug therapy , Ischemic Attack, Transient/complications , Mice , Phytotherapy , Rats, Wistar
4.
J Pharmacol Sci ; 133(2): 110-113, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28233634

ABSTRACT

We previously demonstrated that chotosan (CTS), a traditional herbal formula called Kampo medicine, improves diabetes-induced cognitive deficits. In the present study, we investigated the antidepressant-like effects of CTS in mice. The administration of CTS (1.0 g/kg, for 3 days) decreased the immobility time in the forced-swim test, and this decrease was prevented by the prior administration of sulpiride (an antagonist of D2/3 receptors) and WAY100635 (an antagonist of 5-HT1A receptors). None of the treatments tested altered the locomotor activity of mice. These results suggest that CTS exerts antidepressant-like effects through changes in the serotonergic and dopaminergic systems.


Subject(s)
Antidepressive Agents/pharmacology , Dopamine Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Medicine, Kampo , Serotonin Agents/pharmacology , Animals , Disease Models, Animal , Fenclonine/chemistry , Imipramine/chemistry , Imipramine/pharmacology , Ketanserin/chemistry , Ketanserin/pharmacology , Locomotion , Male , Metergoline/chemistry , Mice , Piperazines/chemistry , Piperazines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Sulpiride/chemistry , Sulpiride/pharmacology , Swimming , Yohimbine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL