Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nutrients ; 16(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38337738

ABSTRACT

Athletes often take sport supplements to reduce fatigue and immune disturbances during or after training. This study evaluated the acute effects of concurrent ingestion of alkaline water and L-glutamine on the salivary immunity and hormone responses of boxers after training. Twelve male boxing athletes were recruited in this study. During regular training, the participants were randomly divided into three groups and asked to consume 400 mL of alkaline water (Group A), 0.15 g/kg body weight of L-glutamine with 400 mL of water (Group G), and 0.15 g/kg of L-glutamine with 400 mL of alkaline water (Group A+G) at the same time each day for three consecutive weeks. Before and immediately after the training, saliva, heart rates, and the rate of perceived exertion were investigated. The activity of α-amylase and concentrations of lactoferrin, immunoglobulin A (IgA), testosterone, and cortisol in saliva were measured. The results showed that the ratio of α-amylase activity/total protein (TP) significantly increased after training in Group A+G but not in Group A or G, whereas the ratios of lactoferrin/TP and IgA/TP were unaffected in all three groups. The concentrations of salivary testosterone after training increased significantly in Group A+G but not in Group A or G, whereas the salivary cortisol concentrations were unaltered in all groups. In conclusion, concurrent ingestion of 400 mL of alkaline water and 0.15 g/kg of L-glutamine before training enhanced the salivary α-amylase activity and testosterone concentration of boxers, which would be beneficial for post-exercise recovery.


Subject(s)
Boxing , Salivary alpha-Amylases , Humans , Male , Glutamine/metabolism , Testosterone/metabolism , Hydrocortisone/metabolism , Lactoferrin/metabolism , Immunoglobulin A/metabolism , Athletes , Eating , Saliva/metabolism
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339067

ABSTRACT

Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms. Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and oxidative stress. We discussed human and animal studies that are related to exercise intervention and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals that are associated with acute and chronic inflammatory conditions. Given its health-promoting effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.


Subject(s)
Isothiocyanates , Oxidative Stress , Animals , Humans , Prospective Studies , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Inflammation/drug therapy , Sulfoxides/pharmacology , Dietary Supplements , NF-E2-Related Factor 2/metabolism
3.
J Int Soc Sports Nutr ; 21(1): 2300259, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38193521

ABSTRACT

BACKGROUND: Maintaining proper immune function and hormone status is important for athletes to avoid upper respiratory tract infection (URTI) and insufficient recovery, which is detrimental to sport performance and health. The aim of this study was to evaluate whether three-week supplementation of L-glutamine could benefit the mucosal immunity and hormonal status of combat-sport athletes as well as their rates of upper respiratory tract infection (URTI) and subjective feelings of well-being after intensive training. METHODS: Twenty-one combat-sport athletes from the National Taiwan University of Sport were recruited in this study. After intensive training, two groups of the participants were asked to consume powder form of 0.3 g/kg body weight of L-glutamine (GLU group) or maltodextrin (PLA group) with drinking water in a randomized design at the same time every day during 3 weeks. Saliva samples were collected to measure immunoglobulin A (IgA), nitric oxide (NO), testosterone (T) and cortisol (C) before and after three-week supplementation; moreover, Hooper's index questionnaires were completed for wellness assessment. The incidence and duration of URTI were recorded by using a health checklist throughout the entire study period. RESULTS: Supplementation of L-glutamine significantly enhanced the concentrations of IgA and NO in saliva; additionally, the incidence of URTI was significantly reduced. Regarding hormones, T concentration was significantly decreased in the PLA group, whereas C concentration was significantly increased, resulting in a significant decrease of T/C ratio. In contrast, the GLU group showed a significant increase of T/C ratio, while the mood scores of the Hooper's index questionnaire were higher in the PLA group. CONCLUSIONS: Three-week supplementation of L-glutamine after intensive training enhanced the mucosal immunity, improved hormonal status and reduced the rate of URTI of combat-sport athletes while feelings of well-being were also enhanced. Therefore, L-glutamine would be beneficial for the sports performance and recovery of athletes.


Subject(s)
Athletic Performance , Respiratory Tract Infections , Humans , Glutamine , Immunity, Mucosal , Athletes , Immunoglobulin A , Nitric Oxide , Respiratory Tract Infections/prevention & control , Dietary Supplements , Polyesters
4.
Front Nutr ; 10: 1238846, 2023.
Article in English | MEDLINE | ID: mdl-37794975

ABSTRACT

Background: Multiple sclerosis (MS) is a chronic autoimmune disease. Ellagic acid is a natural polyphenol and affects the fate of neurons through its anti-inflammatory and antioxidant properties. The present study aimed to investigate ellagic acid effects on disease severity, the expression of involved genes in the pathogenesis of MS, and the levels of related cytokines. Methods: The present study was a triple-blind clinical trial. Eligible patients were randomly assigned to two groups: Ellagic acid (25 subjects) for 12 weeks, receiving 180 mg of Ellagic acid (Axenic, Australia) and the control group (25 subjects) receiving a placebo, before the main meals. Before and after the study, the data including general information, foods intake, physical activity, anthropometric data, expanded disability status scale (EDSS), general health questionnaire (GHQ) and pain rating index (PRI), fatigue severity scale (FSS) were assessed, as well as serum levels of interferon-gamma (IFNγ), interleukin-17 (IL-17), interleukin-4 (IL-4) and transforming growth factor-beta (TGF-ß), nitric-oxide (NO) using enzyme-linked immunoassay (ELISA) method and expression of T-box transcription factor (Tbet), GATA Binding Protein 3 (GATA3), retinoic acid-related orphan receptor-γt (RORγt) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were determined using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) method. Findings: Ellagic acid supplementation led to a reduction in IFNγ, IL-17, NO and increased IL-4 in the ellagic acid group, however in the placebo group no such changes were observed (-24.52 ± 3.79 vs. -0.05 ± 0.02, p < 0.01; -5.37 ± 0.92 vs. 2.03 ± 1.03, p < 0.01; -18.03 ± 1.02 vs. -0.06 ± 0.05, p < 0.01, 14.69 ± 0.47 vs. -0.09 ± 0.14, p < 0.01, respectively). Ellagic acid supplementation had no effect on TGF-ß in any of the study groups (p > 0.05). Also, the Tbet and RORγt genes expression decreased, and the GATA3 gene expression in the group receiving ellagic acid compared to control group significantly increased (0.52 ± 0.29 vs. 1.51 ± 0.18, p < 0.01, 0.49 ± 0.18 vs. 1.38 ± 0.14, p < 0.01, 1.71 ± 0.39 vs. 0.27 ± 0.10, p < 0.01). Also, ellagic acid supplementation led to significant decrease in EDSS, FSS and GHQ scores (p < 0.05), and no significant changes observed in PRI score (p > 0.05). Conclusion: Ellagic acid supplementation can improve the health status of MS patients by reduction of the inflammatory cytokines and Tbet and RORγt gene expression, and increment of anti-inflammatory cytokines and GATA3 gene expression.Clinical trial registration: (https://en.irct.ir/trial/53020), IRCT20120415009472N22.

5.
Nutrients ; 15(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686795

ABSTRACT

BACKGROUND: Beetroot juice (BRJ) contains various bioactive compounds suggested to be effective in improving athlete recovery. However, the number of studies evaluating the effects of BRJ on recovery and muscle soreness (MS) indicators in female athletes is limited. Therefore, the present study aimed to determine the effects of BRJ consumption on the performance recovery indicators and MS after exercise-induced muscle damage (EIMD) in female volleyball players. METHODS: Twelve young female volleyball players were evaluated in this study. We utilized a randomized, cross-over, and double-blind design during two phases with a 30-day interval (wash-out). During each phase, EIMD was performed first, followed by BRJ or placebo (PLA) supplementation for two days (eight servings of 50 mL). Recovery monitoring of performance indicators and MS was performed after EIMD. The results of wall-sit, V sit and reach (VSFT), vertical jump height (VJH), pressure pain threshold (PPT), and thigh swelling (Sw-T) tests were recorded 48 h after EIMD. Also, the Perceived Muscle Soreness was recorded using the visual analog scale (VAS) 12 (MS-12 h), 24 (MS-24 h), and 48 (MS-48 h) hours after EIMD. RESULTS: The data were analyzed using two-way repeated measures of ANOVA at p < 0.05. Compared to PLA, BRJ supplementation improves wall-sit performance after EIMD (p < 0.05), while reducing Sw-T and perceived muscle soreness (p < 0.05). However, no significant difference was observed between PLA and BRJ in VJH and VSFT performance after EIMD (p > 0.05). CONCLUSIONS: Our findings indicate that the consumption of BRJ in female volleyball players can be useful for improving some recovery indicators, such as muscle endurance, perceived muscle soreness, and tissue edema, after EIMD.


Subject(s)
Myalgia , Volleyball , Humans , Female , Myalgia/etiology , Myalgia/prevention & control , Antioxidants , Dietary Supplements , Muscles , Polyesters
6.
Nutrients ; 15(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764832

ABSTRACT

BACKGROUND: The improvement of performance and skill indices of volleyball players can affect their success rate. Therefore, the present study aimed to evaluate the effects of acute caffeine supplementation of varied doses on collegiate volleyball players' specific performance and skills. METHOD: This research was a randomized, double-blind, crossover design study in which 15 male volleyball players aged 18 to 25 years participated voluntarily. Participants were randomly placed in three different conditions, including 3 mg of caffeine per kilogram of body weight (C3), 6 mg of caffeine per kilogram of body weight (C6), and a placebo (PLA) with a one-week wash-out period between exercise trials. The supplement was taken 60 min before each exercise session. Ball throwing, hand movement speed, agility, Sargent's jump and handgrip, and attacking and serving skill tests were measured and analyzed to check the performance and skill of the volleyball players. RESULTS: This study showed a significant increase in agility test in C6 compared with the PLA condition (p = 0.02). Additionally, there was a significant improvement in Sargent's jump in C6 compared with PLA (p = 0.00) and C6 compared with the C3 condition (p = 0.00). Also, attacking skill significantly increased in C3 compared with PLA (p = 0.00) and C6 compared with the PLA condition (p = 0.00). In addition, there was a significant increase in serving skill for C6 compared with PLA (p = 0.00) and C3 (p = 0.00). However, there were no significant differences in hand movement speed (p = 0.06), left handgrip (p = 0.85), right handgrip (p = 0.47), or medicine ball throwing (p = 0.22) between the three conditions. CONCLUSIONS: In conclusion, the findings of the current study suggested that a higher dose of caffeine compared with a lower dose may be more effective in movements requiring lower-body explosive power and the ability to change direction. Also, according to the findings, it seems that caffeine can lead to the improvement of complex skills, such as serving and attacking in volleyball.


Subject(s)
Caffeine , Volleyball , Humans , Male , Cross-Over Studies , Hand Strength , Body Weight , Dietary Supplements , Polyesters
7.
Br J Nutr ; 130(1): 127-136, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36172922

ABSTRACT

Few studies have examined the association between coffee consumption and muscle mass; their results are conflicting. Therefore, we examined the association between coffee consumption and low muscle mass prevalence. We also performed an exploratory investigation of the potential effect modification by demographic, health status-related and physical activity-related covariates. This cross-sectional study included 2085 adults aged 40-87 years. The frequency of coffee consumption was assessed using a self-administered questionnaire. Muscle mass was assessed as appendicular skeletal muscle mass/height2 using a multifrequency bioelectrical impedance analyser. We defined low muscle mass using cut-offs recommended by the Asian Working Group for Sarcopenia. Multivariable-adjusted OR for low muscle mass prevalence were estimated using a logistic regression model. The prevalence of low muscle mass was 5·4 % (n 113). Compared with the lowest coffee consumption group (< 1 cup/week), the multivariable-adjusted OR (95 % CI) of low muscle mass prevalence were 0·62 (0·30, 1·29) for 1-3 cups/week, 0·53 (0·29, 0·96) for 4-6 cups/week or 1 cup/d and 0·28 (0·15, 0·53) for ≥ 2 cups/d (P for trend < 0·001). There were no significant interactions among the various covariates after Bonferroni correction. In conclusion, coffee consumption may be inversely associated with low muscle mass prevalence.


Subject(s)
Caffeine , Coffee , Cross-Sectional Studies , Surveys and Questionnaires , Muscle, Skeletal
8.
Br J Nutr ; 129(10): 1703-1713, 2023 05 28.
Article in English | MEDLINE | ID: mdl-35837742

ABSTRACT

Recent meta-analytic work indicated that guar gum supplementation might improve lipid profile markers in different populations. However, critical methodological limitations such as the use of some unreliable data and the lack of inclusion of several relevant studies, and the scarcity in assessments of regression and dose-specific effects make it difficult to draw meaningful conclusions from the meta-analysis. Therefore, current evidence regarding the effects of guar gum supplementation on lipid profile remains unclear. The present systematic review, meta-regression and dose-response meta-analysis aimed to examine the effects of guar gum supplementation on lipid profile (total cholesterol (TC), LDL, TAG and HDL) in adults. Relevant studies were obtained by searching the PubMed, SCOPUS, Embase and Web of Science databases (from inception to September 2021). Weighted mean differences (WMD) and 95 % CI were estimated via a random-effects model. Heterogeneity, sensitivity analysis and publication bias were reported using standard methods. Pooled analysis of nineteen randomised controlled trials (RCT) revealed that guar gum supplementation led to significant reductions in TC (WMD: -19·34 mg/dl, 95 % CI -26·18, -12·49, P < 0·001) and LDL (WMD: -16·19 mg/dl, 95 % CI -25·54, -6·83, P = 0·001). However, there was no effect on TAG and HDL among adults in comparison with control group. Our outcomes suggest that guar gum supplementation lowers TC and LDL in adults. Future large RCT on various populations are needed to show further beneficial effects of guar gum supplementation on lipid profile and establish guidelines for clinical practice.


Subject(s)
Dietary Supplements , Lipids , Galactans/pharmacology , Mannans/pharmacology , Randomized Controlled Trials as Topic
9.
Sports (Basel) ; 10(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36287760

ABSTRACT

Exercise-induced fatigue is a multi-origin physical and mental phenomenon. Efforts to diminish the above predisposition may contribute to endurance, along with athletic well-being, while development of nutritional strategies to optimize condition and exercise performance are essential issues for athletes and trainers. Dietary amino acids are being discussed for their specific health-promoting properties beyond their role as building blocks of proteins. Glutamine, along with cysteine, are two kinds of amino acids that are reported extensively for their anti-oxidation, anti-inflammation, and immune-regulation properties, and are promising in sport applications. In the present study, we designed a randomized, placebo-controlled, crossover trial to examine effects of 7-day supplementation of cystine/glutamine mixture (Cys2/Gln) on self-reporting fatigue index (ratings of perceived exertion, RPE), energy metabolism, and inflammation. We also employed a C2C12 myotube model to examine the capacity of cystine for fatty acid utilization. Cys2/Gln supplementation alleviated fatigue by decreasing RPE and enhanced fatty acid oxidation during a 60 min endurance exercise in human trials, while cystine increased fatty acid utilization in C2C12 myotubes by enhancing mitochondrial respiration. In summary, Cys2/Gln supplementation exerts positive effects on ameliorating exercise-induced fatigue, mechanisms of which can be attributed to enhancement of fatty acid utilization.

10.
Nutrients ; 14(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36145222

ABSTRACT

Black ginger (Kaempferia parviflora) extract (KPE), extracted from KP, a member of the ginger family that grows in Thailand, has a good promotion effect on cellular energy metabolism and therefore has been used to enhance exercise performance and treatment of obesity in previous studies. However, the effect of single-dose administration of KPE on endurance capacity has not been thoroughly studied, and whether the positive effect of KPE on cellular energy metabolism can have a positive effect on exercise capacity in a single dose is unknown. In the present study, we used a mouse model to study the effects of acute KPE administration 1 h before exercise on endurance capacity and the underlying mechanisms. The purpose of our study was to determine whether a single administration of KPE could affect endurance performance in mice and whether the effect was produced through a pro-cellular energy metabolic pathway. We found that a single administration of KPE (62.5 mg/kg·bodyweight) can significantly prolong the exercise time to exhaustion. By measuring the mRNA expression of Hk2, Slc2a4 (Glut4), Mct1, Ldh, Cd36, Cpt1ß, Cpt2, Lpl, Pnpla2 (Atgl), Aco, Acadm (Mcad), Hadh, Acacb (Acc2), Mlycd (Mcd), Pparg, Ppargc1a (Pgc-1α), Tfam, Gp, Gs, Pfkm, Pck1 (Pepck), G6pc (G6pase), Cs, and Pfkl in skeletal muscle and liver, we found that acute high-concentration KPE administration significantly changed the soleus muscle gene expression levels (p < 0.05) related to lipid, lactate, and glycogen metabolism and mitochondrial function. In gastrocnemius muscle and liver, glycogen metabolism-related gene expression is significantly changed by a single-dose administration of KPE. These results suggest that KPE has the potential to improve endurance capacity by enhancing energy metabolism and substrate utilization in muscles and liver.


Subject(s)
Physical Conditioning, Animal , Zingiber officinale , Zingiberaceae , Animals , Energy Metabolism , Glycogen/metabolism , Lactates/metabolism , Lipids/pharmacology , Mice , Muscle, Skeletal/metabolism , PPAR gamma/metabolism , Physical Endurance , Plant Extracts/therapeutic use , RNA, Messenger/metabolism
11.
J Int Soc Sports Nutr ; 19(1): 196-218, 2022.
Article in English | MEDLINE | ID: mdl-35813845

ABSTRACT

Purpose: Previous studies have suggested that beta-alanine supplementation may benefit exercise performance, but current evidence regarding its effects on body composition remains unclear. This systematic review and meta-analysis aimed to investigate the effects of beta-alanine supplementation on body composition indices. Methods: Online databases, including PubMed/Medline, Scopus, Web of Science, and Embase, were searched up to April 2021 to retrieve randomized controlled trials (RCTs), which examined the effect of beta-alanine supplementation on body composition indices. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCTs. Results: Among the initial 1413 studies that were identified from electronic databases search, 20 studies involving 492 participants were eligible. Pooled effect size from 20 studies indicated that beta-alanine supplementation has no effect on body mass (WMD: -0.15 kg; 95% CI: -0.78 to 0.47; p = 0.631, I2 = 0.0%, p = 0.998), fat mass (FM) (WMD: -0.24 kg; 95% CI: -1.16 to 0.68; p = 0.612, I2 = 0.0%, p = 0.969), body fat percentage (BFP) (WMD: -0.06%; 95% CI: -0.53 to 0.40; p = 0.782, I2 = 0.0%, p = 0.936), and fat-free mass (FFM) (WMD: 0.05 kg; 95% CI: -0.71 to 0.82; p = 0.889, I2 = 0.0%, p = 0.912). Subgroup analyses based on exercise type (resistance training [RT], endurance training [ET], and combined training [CT]), study duration (<8 and ≥8 weeks), and beta-alanine dosage (<6 and ≥6 g/d) demonstrated similar results. Certainty of evidence across outcomes ranged from low to moderate. Conclusions: This meta-analysis study suggests that beta-alanine supplementation is unlikely to improve body composition indices regardless of supplementation dosage and its combination with exercise training. No studies have examined the effect of beta-alanine combined with both diet and exercise on body composition changes as the primary variable. Therefore, future studies examining the effect of the combination of beta-alanine supplementation with a hypocaloric diet and exercise programs are warranted.


Subject(s)
Body Composition , Dietary Supplements , Exercise , Humans , beta-Alanine/pharmacology
12.
Antioxidants (Basel) ; 11(4)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35453291

ABSTRACT

The antioxidant system can be critical in reducing exacerbated inflammation in COVID-19. This study compared the antioxidant and inflammatory responses between COVID-19 outpatients and seemingly healthy individuals. This descriptive-analytical cross-sectional study was conducted on 53 COVID-19 outpatients and 53 healthy individuals as controls. The serum concentrations of amyloid A (SAA), total antioxidant capacity (TAC), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured and compared between COVID-19 patients and controls using the independent sample t-test before and after controlling for dietary supplement use. A generalized estimating equation (GEE) regression model, limited to COVID-19 patients, was used to evaluate the odds ratios (ORs) and 95% confidence intervals (95% CIs) of disease symptoms on days 1, 7, 14, 21, and 28 after the disease onset. Serum concentrations of SOD (p ≤ 0.001) and GPx (p = 0.001) were significantly higher in COVID-19 patients than in controls before adjustment for dietary supplement use. GPx remained significantly higher among COVID-19 patients than in controls after adjustment for all dietary supplements (p = 0.005). Moreover, serum concentrations of GPx (p = 0.003), SOD (p = 0.022), and TAC (p = 0.028) remained significantly higher among COVID-19 patients than in controls after adjustment for vitamin D supplementation. This study showed higher GPx in COVID-19 outpatients than in controls after adjustment for dietary supplement use. Moreover, elevated SOD, GPx, and TAC concentrations were shown in COVID-19 outpatients compared to controls after adjusting for vitamin D supplementation. These results may provide a useful therapeutic target for treating oxidative stress in COVID-19 disease, which may help ameliorate the pandemic.

13.
Front Nutr ; 9: 847215, 2022.
Article in English | MEDLINE | ID: mdl-35356739

ABSTRACT

The 2019 coronavirus (COVID-19) epidemic, has caused unprecedented global social and economic impacts and many deaths. Many risk factors have been identified in the progression of COVID-19 to severe and critical stages, and it is shown that the coronavirus appears more severely in people with cancer. Pro-inflammatory status and weakened immune system due to cancer-related treatments can be determinants in the immune system's response to the coronavirus in these patients. Higher physical activity levels are associated with lower hospitalization rates and mortality in COVID-19. Also, regular exercise training can improve immune system responses, modulate inflammatory responses, and improve psychological parameters in cancer patients. The interactive effects of nutritional supplements on immune responses and anti-inflammatory status have been shown in some studies. The purpose of this perspective article was to investigate the interaction between dietary supplementation and regular physical exercise in controlling risk factors associated with coronavirus in cancer patients. In addition to appropriate dietary habits, some nutritional supplements, especially vitamin D, have been shown to improve the immune system's response against COVID-19 and cancer. Using lifestyle strategies such as regular physical activity and intake of functional compounds as supplements can be effective in treatment outcomes, quality of life, and overall survival in cancer patients. We proposed that combining dietary supplements and exercise training in cancer patients can boost immune responses against COVID-19 and probably improve vaccine responses. Angiotensin (ANG)-(1-7) Mas receptor axis can probably activate following exercise training and vitamin D combination. And can prevent pulmonary injury, hematological alterations, and hyperinflammatory state in COVID-19.

14.
Eur J Nutr ; 61(5): 2331-2339, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35106632

ABSTRACT

PURPOSE: Although acute prolonged strenuous exercise has been shown to increase markers of gastrointestinal permeability and damage, little is known regarding the efficacy of nutritional supplement interventions on the attenuation of exercise-induced gastrointestinal syndrome. This study addressed the effects of oral amino acid supplementation on markers of gastrointestinal permeability and damage in response to exercise. METHODS: Sixteen active men aged 22.7 ± 2.6 years (mean ± standard deviation) completed placebo or cystine and glutamine supplementation trials in random order. Participants received either a placebo or cystine and glutamine supplements, three times a day for 5 days, separated by a 2-week washout period. On day 6, participants took their designated supplements 30 min before running at a speed corresponding to 75% of maximal oxygen uptake for 1 h, followed by a 4-h rest period. Blood samples were collected pre-exercise, immediately post-exercise, 30 min post-exercise, and 1, 2 and 4 h post-exercise on day 6. The plasma lactulose to mannitol ratio (L:M) and plasma intestinal fatty acid-binding protein (I-FABP) were used as markers of gastrointestinal permeability and damage, respectively. RESULTS: Plasma L:M (linear mixed model, coefficient ± standard error: - 0.011 ± 0.004, P = 0.0090) and changes (i.e., from pre-exercise) in plasma I-FABP (linear mixed model, - 195.3 ± 65.7 coefficient ± standard error (pg/mL), P = 0.0035) were lower in the cystine and glutamine supplementation trial than in the placebo trial. CONCLUSION: Oral cystine and glutamine supplementation attenuated the markers of gastrointestinal permeability and damage after 1 h of strenuous running in young men. TRIAL REGISTRATION NUMBER: UMIN000026008. DATE OF REGISTRATION: 13 December 2018.


Subject(s)
Glutamine , Running , Biomarkers , Cystine/metabolism , Cystine/pharmacology , Dietary Supplements , Gastrointestinal Tract/metabolism , Glutamine/pharmacology , Humans , Male , Permeability , Running/physiology , Young Adult
15.
Sports (Basel) ; 9(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34941800

ABSTRACT

Previous studies have investigated caffeine (CAF) and taurine (TAU) in isolation and combined during exercise in males. However, the potential synergistic effect during high-intensity exercise remains unknown in female athletes. Seventeen female team-sport athletes participated (age: 23.4 ± 2.1 years; height: 1.68 ± 0.05 m; body mass: 59.5 ± 2.2 kg). All participants were habitual caffeine consumers (340.1 ± 28.6 mg/day). A double-blind randomized crossover design was used. Participants completed four experimental trials: (i) CAF and TAU (6 mg/kg body mass of CAF + 1 g of TAU), (ii) CAF alone; (iii) TAU alone; and (iv) placebo (PLA). Supplements were ingested 60 min before a 30-s Wingate Anaerobic Test (WAnT). Heart rate and blood lactate (BL) were measured before and immediately after the WAnT; and ratings of perceived exertion (RPE) were recorded immediately after the WAnT. Peak power (PP) was significantly higher following co-ingestion of CAF+TAU compared to PLA (p = 0.03) and TAU (p = 0.03). Mean power (MP) was significantly higher following co-ingestion of CAF+TAU compared to PLA (p = 0.01). No other differences were found between conditions for PP and MP (p > 0.05). There were also no observed differences in fatigue index (FI), BL; heart rate; and RPE between conditions (p > 0.05). In conclusion, compared to PLA the combined ingestion of 6 mg/kg of CAF and 1 g of TAU improved both PP and MP in female athletes habituated to caffeine; however; CAF and TAU independently failed to augment WAnT performance.

16.
Nutrients ; 13(12)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34959851

ABSTRACT

This article focuses on how nutrition may help prevent and/or assist with recovery from the harmful effects of strenuous acute exercise and physical training (decreased immunity, organ injury, inflammation, oxidative stress, and fatigue), with a focus on nutritional supplements. First, the effects of ketogenic diets on metabolism and inflammation are considered. Second, the effects of various supplements on immune function are discussed, including antioxidant defense modulators (vitamin C, sulforaphane, taheebo), and inflammation reducers (colostrum and hyperimmunized milk). Third, how 3-hydroxy-3-methyl butyrate monohydrate (HMB) may offset muscle damage is reviewed. Fourth and finally, the relationship between exercise, nutrition and COVID-19 infection is briefly mentioned. While additional verification of the safety and efficacy of these supplements is still necessary, current evidence suggests that these supplements have potential applications for health promotion and disease prevention among athletes and more diverse populations.


Subject(s)
Antioxidants/therapeutic use , Athletes , Dietary Supplements , Exercise/immunology , Oxidative Stress , Physical Endurance , COVID-19/epidemiology , COVID-19/immunology , Humans , Inflammation/epidemiology , Inflammation/immunology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Physical Endurance/drug effects , Physical Endurance/immunology , SARS-CoV-2/immunology , Sports Nutritional Sciences
17.
Nutrients ; 13(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34836211

ABSTRACT

BACKGROUND: We aimed to investigate the effects of an 8-week total-body resistance exercise (TRX) suspension training intervention combined with taurine supplementation on body composition, blood glucose, and lipid markers in T2D females. METHODS: Forty T2D middle-aged females (age: 53 ± 5 years, body mass = 84.3 ± 5.1 kg) were randomly assigned to four groups, TRX suspension training + placebo (TP; n = 10), TRX suspension training + taurine supplementation (TT; n = 10), taurine supplementation (T; n = 10), or control (C; n = 10). Body composition (body mass, body mass index (BMI), body fat percentage (BFP)), blood glucose (fasting blood sugar (FBS)), hemoglobin A1c (HbA1c), Insulin, and Insulin resistance (HOMA-IR), and lipid markers (low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), and total cholesterol (TC)) were evaluated prior to and after interventions. RESULTS: All three interventions significantly decreased body mass, BMI, and BFP with no changes between them for body mass and BMI; however, BFP changes in the TT group were significantly greater than all other groups. FBS was significantly reduced in TP and TT. Insulin concentrations' decrement were significantly greater in all experimental groups compared to C; however, no between group differences were observed between TT, TP, and T. In regards to HOMA-IR, decreases in TT were significantly greater than all other groups TG, HbA1c, and LDL were reduced following all interventions. HDL values significantly increased only in the TT group, while TC significantly decreased in TP and TT groups. Changes in HbA1c, TG, HDL, and TC were significantly greater in the TT compared to all other groups. CONCLUSIONS: TRX training improved glycemic and lipid profiles, while taurine supplementation alone failed to show hypoglycemic and hypolipidemic properties. Notably, the synergic effects of TRX training and taurine supplementation were shown in HbA1c, HOMA-IR, TG, TC, HDL, and BFP changes. Our outcomes suggest that TRX training + taurine supplementation may be an effective adjuvant therapy in individuals with T2D.


Subject(s)
Blood Glucose/metabolism , Body Composition , Diabetes Mellitus, Type 2/blood , Dietary Supplements , Lipids/blood , Resistance Training , Taurine/pharmacology , Biomarkers/blood , Body Composition/drug effects , Diet , Energy Intake , Fasting/blood , Glycated Hemoglobin/metabolism , Humans , Insulin Resistance , Middle Aged , Nutrients/analysis
18.
Medicina (Kaunas) ; 57(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34684067

ABSTRACT

Background and objectives: The purpose of this study was to investigate the influences of oral high-dose genistein (GE) administration on exercise-induced oxidative stress, inflammatory response and tissue damage. Materials and Methods: Thirty-two mice were randomly divided into control group (Con; sedentary/0.5% CMC-Na), GE administrated group (GE; sedentary/GE dosed), exercise group (Ex; exercise/0.5% CMC-Na), or GE administrated plus exercise group (GE + Ex; exercise/GE dosed), mice in the GE and GE + Ex group were given GE orally at the dose of 200 mg/kg weight. Results: Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels, liver interleukin (IL)-6, IL-1ß, superoxide dismutase 1 (SOD1), catalase (CAT), hemeoxygenase-1 (HO-1) gene expression levels and skeletal muscle IL-6, nuclear factor erythroid 2-related factor (Nrf2), and HO-1 gene expression levels increased immediately after exhaustive exercise. GE supplementation increased liver protein carbonyl concentrations. On the other hand, GE supplementation significantly decreased SOD1, CAT gene expression levels in the liver and Nrf2, and HO-1 gene expression levels in the skeletal muscles. Conclusions: Acute exercise induced organ damage, inflammation, and oxidative stress in skeletal muscles and the liver. However, a single dose of GE supplementation before exercise did not lead to favorable antioxidant and anti-inflammatory effects in this study.


Subject(s)
Genistein , Oxidative Stress , Animals , Antioxidants/metabolism , Dietary Supplements , Genistein/metabolism , Genistein/pharmacology , Genistein/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Liver/metabolism , Mice , Muscle, Skeletal
19.
Nutrients ; 13(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34684484

ABSTRACT

Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise.


Subject(s)
Antioxidants/therapeutic use , Dietary Supplements , Exercise , Myocardium/pathology , Oxidative Stress , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress/genetics
20.
Nutrients ; 13(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34444896

ABSTRACT

BACKGROUND: The favorable influences of saffron supplementation on metabolic diseases have previously been shown. We aimed to assess the effects of saffron supplementation on blood pressure in adults. METHODS: A systematic search was performed in Scopus, Embase, and the Cochrane library databases to find randomized controlled trials (RCTs) related to the effect of saffron supplementation on blood pressure in adults up to March 2021. The primary search yielded 182 publications, of which eight RCTs were eligible. RESULTS: Our results showed that saffron supplementation resulted in a significant decrease in systolic blood pressure (weighted mean difference (WMD): -0.65 mmHg; 95% CI: -1.12 to -0.18, p = 0.006) and diastolic blood pressure (DBP) (WMD: -1.23 mmHg; 95% CI: -1.64 to -0.81, p < 0.001). Moreover, saffron supplementation reduced DBP in a non-linear fashion, based on duration (r = -2.45, p-nonlinearity = 0.008). CONCLUSIONS: Saffron supplementation may significantly improve both systolic and diastolic blood pressure in adults. It should be noted that the hypotensive effects of saffron supplementation were small and may not reach clinical importance.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Crocus/chemistry , Dietary Supplements , Plant Extracts/pharmacology , Adult , Female , Humans , Male , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL