Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37836781

ABSTRACT

This article presents the results of studies investigating the effect of red kale (Brassica oleracea L. ssp. acephala L. var. sabellica) extract on cancer cells (HT-29). The cytotoxicity of the red kale extract was assessed using MTT and LDH assays, while qRT-PCR was employed to analyze the expression of genes associated with the p53 signaling pathway to elucidate the effect of the extract on cancer cells. Furthermore, HPLC-ESI-QTOF-MS/MS was applied to identify bioactive compounds present in red kale. The obtained results indicated that red kale extract reduced the viability and suppressed the proliferation of HT-29 cells (the IC50 value of 60.8 µg/mL). Additionally, mRNA expression analysis revealed significant upregulation of several genes, i.e., casp9, mapk10, mapk11, fas, kat2 b, and ubd, suggesting the induction of cell apoptosis through the caspase-dependent pathway. Interestingly, the study revealed a decrease in the expression of genes including cdk2 and cdk4 encoding cell cycle-related proteins, which may lead to cell cycle arrest. Furthermore, the study identified certain bioactive compounds, such as sinigrin, spirostanol, hesperetin and usambarensine, which could potentially contribute to the apoptotic effect of red kale extracts. However, further investigations are necessary to elucidate the specific role of these individual compounds in the anti-cancer process.


Subject(s)
Brassica , Colorectal Neoplasms , Humans , Brassica/metabolism , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Apoptosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
2.
Sci Rep ; 12(1): 22217, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564541

ABSTRACT

Β-asarone is a phenylpropane derivative present in the rhizomes of Acorus calamus, that was proved to exhibit toxic effects in humans. Because of its presence the whole plant that is commonly used in traditional medicine for its sedative, anti-inflammatory, neuroprotective and other properties has limited application nowadays. In the study, qualitative and quantitative analysis of a collection of nine essential oil (EO) samples of European and Asian origin was performed. The final content of ß-asarone in the tested samples ranged between 0.265 and 1.885 mg/mL. Having in mind a possible application of the EO as a biopesticide, this research aimed at the development of CPC-based purification protocol that could help remove ß-asarone from EO. It was proved that the biphasic solvent system composed of n-hexane/EtOAc/MeOH/water, 9:1:9:1 (v/v/v/v) was capable of the removal of the toxic constituent in the CPC chromatograph operated in the ascending elution mode with 2200 rpm and a flow rate of 5 mL/min. The chromatographic analysis that lasted only 144 min effectively separated ß-asarone (purity of 95.5%) and α-asarone (purity of 93.7%) directly from the crude Acorus calamus rhizome EO.


Subject(s)
Acorus , Oils, Volatile , Humans , Oils, Volatile/chemistry , Anisoles/chemistry , Chromatography, Liquid
3.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563248

ABSTRACT

The aim of the study was to present the fingerprint of different Lepidium peruvianum tuber extracts showing glucosinolates-containing substances possibly playing an important role in preventinting dementia and other memory disorders. Different phenotypes of Lepidium peruvianum (Brassicaceae) tubers were analysed for their glucosinolate profile using a liquid chromatograph coupled with mass spectrometer (HPLC-ESI-QTOF-MS/MS platform). Qualitative analysis in 50% ethanolic extracts confirmed the presence of ten compounds: aliphatic, indolyl, and aromatic glucosinolates, with glucotropaeolin being the leading one, detected at levels between 0-1.57% depending on phenotype, size, processing, and collection site. The PCA analysis showed important variations in glucosinolate content between the samples and different ratios of the detected compounds. Applied in vitro activity tests confirmed inhibitory properties of extracts and single glucosinolates against acetylcholinesterase (AChE) (15.3-28.9% for the extracts and 55.95-57.60% for individual compounds) and butyrylcholinesterase (BuChE) (71.3-77.2% for the extracts and 36.2-39.9% for individual compounds). The molecular basis for the activity of glucosinolates was explained through molecular docking studies showing that the tested metabolites interacted with tryptophan and histidine residues of the enzymes, most likely blocking their active catalytic side. Based on the obtained results and described mechanism of action, it could be concluded that glucosinolates exhibit inhibitory properties against two cholinesterases present in the synaptic cleft, which indicates that selected phenotypes of L. peruvianum tubers cultivated under well-defined environmental and ecological conditions may present a valuable plant material to be considered for the development of therapeutic products with memory-stimulating properties.


Subject(s)
Lepidium , Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors/pharmacology , Glucosinolates/analysis , Lepidium/chemistry , Molecular Docking Simulation , Phenotype , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL