Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Molecules ; 28(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36615551

ABSTRACT

In this study, three oil-in-water nanoemulsions were tested in two stages: In the first stage, three levels (on the substrate dry matter (DM)), namely 3%, 6%, and 9%, of three different oils, olive oil (OO), corn oil (CO), and linseed oil (LO), in raw and nanoemulsified (N) forms were used separately in three consecutive rumen batch cultures trials. The second stage, which was based on the first stage's results, consisted of a batch culture trial that compared the raw and nanoemulsified (N) forms of all three oils together, provided at 3% of the DM. In the first stage, NOO, NCO, and NLO preserved higher unsaturated fatty acid (UFA) and less saturated fatty acid (SFA) compared to OO, CO, and LO, respectively; noticeably, NCO had UFA:SFA = 1.01, 1.16, and 1.34 compared to CO, which had UFA:SFA = 0.66, 0.69, and 0.72 when supplemented at 3%, 6%, 9% of DM, respectively. In the second stage, UFA:SFA = 1.04, 1.12, and 1.07 for NOO, NCO, NLO, as compared to UFA:SFA = 0.69, 0.68, and 0.72 for OO, CO, and LO supplemented at 3% of DM. In conclusion, oil-in-water nanoemulsions showed an ability to decrease the transformation of UFA to SFA in the biohydrogenation environment without affecting the rumen microorganisms.


Subject(s)
Batch Cell Culture Techniques , Fatty Acids , Animals , Fatty Acids/chemistry , Fermentation , Diet , Rumen/metabolism , Fatty Acids, Unsaturated/metabolism , Dietary Supplements , Linseed Oil , Olive Oil/metabolism , Corn Oil/metabolism , Water/metabolism
2.
J Anim Sci Biotechnol ; 13(1): 104, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35953848

ABSTRACT

BACKGROUND: The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production. Paulownia leaves silage (PLS) was supplemented to dairy cows' diet and evaluated in vitro (Exp. 1; Rusitec) and in vivo (Exp. 2, cannulated lactating dairy cows and Exp. 3, non-cannulated lactating dairy cows). The study investigated the PLS effect on ruminal fermentation, microbial populations, methane production and concentration, dry matter intake (DMI), and fatty acid (FA) proportions in ruminal fluid and milk. RESULTS: Several variables of the ruminal fluid were changed in response to the inclusion of PLS. In Exp. 1, the pH increased linearly and quadratically, whereas ammonia and total volatile fatty acid (VFA) concentrations increased linearly and cubically. A linear, quadratic, and cubical decrease in methane concentration was observed with increasing dose of the PLS. Exp. 2 revealed an increase in ruminal pH and ammonia concentrations, but no changes in total VFA concentration. Inclusion of PLS increased ruminal propionate (at 3 h and 6 h after feeding), isovalerate, and valerate concentrations. Addition of PLS also affected several populations of the analyzed microorganisms. The abundances of protozoa and bacteria were increased, whereas the abundance of archaea were decreased by PLS. Methane production decreased by 11% and 14% in PLS-fed cows compared to the control in Exp. 2 and 3, respectively. Exp. 3 revealed a reduction in the milk protein and lactose yield in the PLS-fed cows, but no effect on DMI and energy corrected milk yield. Also, the PLS diet affected the ruminal biohydrogenation process with an increased proportions of C18:3 cis-9 cis-12 cis-15, conjugated linoleic acid, C18:1 trans-11 FA, polyunsaturated fatty acids (PUFA), and reduced n6/n3 ratio and saturated fatty acids (SFA) proportion in milk. The relative transcript abundances of the 5 of 6 analyzed genes regulating FA metabolism increased. CONCLUSIONS: The dietary PLS replacing the alfalfa silage at 60 g/kg diet can reduce the methane emission and improve milk quality with greater proportions of PUFA, including conjugated linoleic acid, and C18:1 trans-11 along with reduction of SFA. Graphical abstract of the experimental roadmap.

3.
Molecules ; 27(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35807533

ABSTRACT

Paulownia is a fast-growing tree that produces a huge mass of leaves as waste that can be used as a feed source for ruminants. The previous study showed that phenolic compounds were the most active biological substances in Paulownia leaves, which affected the ruminal parameters and methane concentration. However, there are no scientific reports on the Paulownia leaves extract (PLE) containing phenolic compounds for their mode of action in the rumen. Phenolics constituted the main group of bioactive compounds in PLE (84.4 mg/g dry matter). PLE lowered the concentration of ammonia, modulated the VFA profile in the ruminal fluid, and decreased methane production. The PLE caused a significant reduction of in vitro dry matter degradability, reduced the number of methanogens and protozoa, and affected selected bacteria populations. PLE had a promising effect on the fatty acid profile in the ruminal fluid. Paulownia as a new dietary component or its extract as a feed additive may be used to mitigate ruminal methanogenesis, resulting in environmental protection and reducing ruminal biohydrogenation, improving milk and meat quality.


Subject(s)
Fatty Acids , Rumen , Animal Feed/analysis , Animals , Diet , Fatty Acids/metabolism , Fermentation , Methane , Plant Extracts/metabolism , Plant Extracts/pharmacology
4.
Molecules ; 27(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35164250

ABSTRACT

It is not easy to find data in the scientific literature on the quantitative content of individual phytochemicals. It is possible to find groups of compounds and even individual compounds rather easily, but it is not known what their concentration is in cultivated or wild plants. Therefore, the subject of this study was to determine the content of individual compounds in the new Paulownia species, Oxytree, developed in a biotechnology laboratory in 2008 at La Mancha University in Spain. Six secondary metabolites were isolated, and their chemical structure was confirmed by spectral methods. An analytical method was developed, which was then used to determine the content of individual compounds in leaves, twigs, flowers and fruits of Paulownia Clon in Vitro 112®. No flavonoids were found in twigs and fruits of Oxytree, while the highest phenylethanoid glycosides were found in twigs. In this study, we also focused on biological properties (anticoagulant or procoagulant) of extract and four fractions (A-D) of different chemical composition from Paulownia Clon in Vitro 112 leaves using whole human blood. These properties were determined based on the thrombus-formation analysis system (T-TAS), which imitates in vivo conditions to assess whole blood thrombogenecity. We observed that three fractions (A, C and D) from leaves decrease AUC10 measured by T-TAS. In addition, fraction D rich in triterpenoids showed the strongest anticoagulant activity. However, in order to clarify the exact mechanism of action of the active substances present in this plant, studies closer to physiological conditions, i.e., in vivo studies, should be performed, which will also allow to determine the effects of their long-term effects.


Subject(s)
Anticoagulants/pharmacology , Blood , Lamiales/chemistry , Plant Extracts/pharmacology , Anticoagulants/pharmacokinetics , Area Under Curve , Blood Platelets/drug effects , Chromatography, High Pressure Liquid/methods , Humans , Lamiales/metabolism , Mass Spectrometry/methods , Plant Extracts/pharmacokinetics , Plant Leaves/chemistry
5.
Animals (Basel) ; 11(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34827797

ABSTRACT

The experiment was conducted to study the effects of supplementing a cellulase enzymes cocktail to lactating buffaloes' diet, on the nutrient intake, nutrient digestibility, and milk production performance and composition. Twenty-four lactating Egyptian buffaloes were assigned into one of the following treatments: CON-control consisted of a total mixed ration, CENZ-the total mixed ration supplemented by a commercial source of cellulase enzyme, FENZ-the total mixed ration supplemented with cellulase enzyme cocktail produced in-farm. Supplementing the diet with the in-farm source of cellulase (FENZ) had a significantly higher impact on crude protein, neutral detergent fiber, and acid detergent fiber digestibility. However, FENZ tended to increase the EE digestibility compared to CENZ. FENZ showed significantly higher nutrient digestibility percentages compared to other groups. Supplementing the diet with cellulase enzymes (CON vs. ENZ) significantly increased the daily milk yield and the fat correct milk yield; both yields were significantly higher with FENZ than all groups. Oleic, linoleic, and linolenic acid concentration were significantly higher with cellulase enzymes supplementation (CON vs. ENZ) and the conjugated linoleic acid concentration. Supplementing fungal cellulase enzyme produced on a farm-scale has improved milk productivity, fat yield, and milk fat unsaturated fatty acids profile in lactating buffaloes.

6.
BMC Vet Res ; 17(1): 228, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34174886

ABSTRACT

BACKGROUND: Hepatopathies are an important group of disorders in dogs where proper nutritional care is crucial. Supplementation with a hepatoprotectant like silybin can improve liver function and should not interfere with nutrient digestibility. The purpose of this study was to investigate the effect of both pure silybin and commercial hepatoprotectant on nutrients digestibility, liver function indices and health status in healthy dogs (EXP1). Moreover, the second experiment (EXP2) investigated the effect of commercial hepatoprotectant on liver function tests and liver-associated miRNAs concentration in dogs with idiopathic liver disorder. RESULTS: Nutrient digestibility was not affected by treatment in EXP1. Supplementation did alter the serum fatty acid profile, with no clinical relevance. The levels of liver markers such as ALT, AST and GGT significantly decreased. In EXP2, supplementation with commercial hepatoprotectant containing silybin improved liver function tests. A decrease was observed in liver serum markers such as ALT, AST and miR122 concentration. CONCLUSIONS: EXP1 confirmed that silybin (whether pure or as a commercial hepatoprotectant) does not interfere with digestion which subsequently exerts no detrimental effect on dogs' health and metabolism. In EXP2, dietary supplementation with commercial hepatoprotectant containing silybin resulted in a decreased activity of serum liver markers, accompanied by a decrease in the concentration of liver-specific miRNA molecules. Liver function indices were consequently improved. Silybin supplementation can thus serve as an effective therapeutical tool in dogs with hepatopathies.


Subject(s)
Dietary Supplements , Liver Diseases/diet therapy , Silybin/pharmacology , Animal Feed/analysis , Animals , Biomarkers/blood , Diet/veterinary , Digestion/drug effects , Dog Diseases/diet therapy , Dog Diseases/enzymology , Dogs , Female , Liver Diseases/enzymology , Male , MicroRNAs
8.
Front Vet Sci ; 8: 630971, 2021.
Article in English | MEDLINE | ID: mdl-33585621

ABSTRACT

We investigated the effect of diets containing organic zinc and a mixture of medicinal herbs on ruminal microbial fermentation and histopathology in lambs. Twenty-eight lambs were divided into four groups: unsupplemented animals (Control), animals supplemented with organic zinc (Zn, 70 mg Zn/kg diet), animals supplemented with a mixture of dry medicinal herbs (Herbs, 100 g dry matter (DM)/d) and animals supplemented with both zinc and herbs (Zn+Herbs). Each lamb was fed a basal diet composed of meadow hay (700 g DM/d) and barley (300 g DM/d). The herbs Fumaria officinalis L. (FO), Malva sylvestris L. (MS), Artemisia absinthium L. (AA) and Matricaria chamomilla L. (MC) were mixed in equal proportions. The lambs were slaughtered after 70 d. The ruminal contents were used to determine the parameters of fermentation in vitro and in vivo and to quantify the microbes by molecular and microscopic methods. Samples of fresh ruminal tissue were used for histopathological evaluation. Quantitative analyses of the bioactive compounds in FO, MS, AA, and MC identified 3.961, 0.654, 6.482, and 12.084 g/kg DM phenolic acids and 12.211, 6.479, 0.349, and 2.442 g/kg DM flavonoids, respectively. The alkaloid content in FO was 6.015 g/kg DM. The diets affected the levels of total gas, methane and n-butyrate in vitro (P < 0.046, < 0.001, and < 0.001, respectively). Relative quantification by real-time PCR indicated a lower total ruminal bacterial population in the lambs in the Zn and Zn+Herbs groups than the Control group (P < 0.05). The relative abundances of Ruminococcus albus, R. flavefaciens, Streptococcus bovis, and Butyrivibrio proteoclasticus shifted in the Zn group. Morphological observation found a focally mixed infiltration of inflammatory cells in the lamina propria of the rumen in the Zn+Herbs group. The effect of the organic zinc and the herbal mixture on the parameters of ruminal fermentation in vitro was not confirmed in vivo, perhaps because the ruminal microbiota of the lambs adapted to the zinc-supplemented diets. Long-term supplementation of a diet combining zinc and medicinal herbs, however, may negatively affect the health of the ruminal epithelium of lambs.

9.
Biomed Pharmacother ; 137: 111301, 2021 May.
Article in English | MEDLINE | ID: mdl-33561640

ABSTRACT

BACKGROUND: Paulownia Clone in Vitro 112, also known as Oxytree is a hybrid of Paulownia elongata and Paulownia fortunei, developed under laboratory conditions. Its seeds are sterile, making it a noninvasive variety that can only be propagated in the laboratory. In China, species from the Paulownia genus (Paulowniaceae) are widely used in traditional medicine for the treatment of infectious diseases, such as gonorrhea and erysipelas. It has a broad spectrum of bioactivity, including neuroprotective, antioxidant, antibacterial, antiphlogistic, antiviral, and cytotoxic actions. However, the antiplatelet potential of Paulownia Clone in Vitro 112 has not yet been described. STUDY DESIGN: The aim of our study was thus to examine the effect of an extract and four fractions from leaves of Paulownia Clone in Vitro 112 on various parameters of platelet activation in an in vitro model. METHODS: Composition of the investigated extract and fractions was determined by UHPLC-UV-MS. The following parameters of platelet activation were investigated: nonenzymatic lipid peroxidation in resting platelets; enzymatic lipid peroxidation (AA metabolism) in platelets activated by thrombin; superoxide anion (O2-.) generation in the resting and activated platelets; platelet adhesion to collagen type I and fibrinogen; platelet aggregation stimulated by various physiological agonists, such as ADP, collagen, and thrombin. The effect of the extract and fractions on extracellular LDH activity, a marker of cell damage, was also determined. RESULTS: Verbascoside a phenylethnanoid glycoside, was the main secondary metabolite of the extract from leaves of oxytree (constituting approximately 45 % of all compounds). There were also iridoids, such as catalpol, aucubin, and 7-hydroxytomentoside, as well as flavonoids, such as luteolin and apigenin glycosides. Moreover, the extract had stronger antiplatelet properties than the fractions. For example, the extract at 10 µg/mL inhibited five parameters of platelet activation. CONCLUSIONS: Our results show that Paulownia Clone in Vitro 112 leaves are a new valuable source of compounds with antiplatelet potential.


Subject(s)
Blood Platelets/drug effects , Lamiales , Plant Extracts/pharmacology , Plants, Genetically Modified , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Blood Platelets/metabolism , Cloning, Molecular , Female , Glucosides/pharmacology , Humans , Lamiales/genetics , Lamiales/metabolism , Lipid Peroxidation/drug effects , Male , Phenols/pharmacology , Plant Extracts/isolation & purification , Plant Leaves , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Platelet Adhesiveness/drug effects , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/isolation & purification , Secondary Metabolism
10.
J Dairy Sci ; 103(12): 11424-11438, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33222855

ABSTRACT

Many dairy producers are keen to feed low-producing late-lactation cows only once per day (1×) to reduce production costs. This study examined effects of feeding frequency (FF: thrice versus once daily) on behavioral patterns, ruminal fermentation, and milk production performance of cows and supplementation of yellow grease oil (YO) rich in 18:2n-6 as a potential strategy to alleviate the possible negative effects of 1× daily feeding. Twenty-four late-lactation Holstein cows (215 ± 53.8 DIM) housed in tiestalls were assigned to 4 treatments according to a 2 × 2 factorial arrangement with 2 FF [3 times daily (3×) at 0800, 1400, and 2000 h; or 1× at 0800 h] and 2 high-forage total mixed rations (TMR), without (CON) or with 25 g/kg of dry matter of YO (YGO), in a randomized complete block design. Treatments were applied for 21 d. Feeding behavior was recorded every 5 min over a 24-h period on d 19. Fresh TMR and orts were sampled (d 15 to 21) and separated using a 3-screen (19, 8, and 1.18 mm) Penn State Particle Separator for sorting activity. Ruminal fluid samples were collected using oral stomach tubing on d 21. Cows on 1×-CON spent more time eating during the first 6 h after feeding at 0800 h than did cows on 3×-CON or 1×-YGO. Decreasing FF increased meal length and tended to increase meal size for CON cows, but supplementing YO increased meal bouts and reduced meal length and size for cows fed 1×. Cows on 1×-CON had the greatest ruminating time between 2000 and 0800 h compared with other treatments. Total and daytime distribution of lying time did not vary by treatments. Sorting activity was higher for cows fed frequently, and the extent of sorting was increased by oil supplementation. In the morning ruminal fluid samples, pH was not different among treatments, but in the evening samples 1× daily feeding reduced ruminal pH compared with 3×. In the morning and evening samples, ratios of acetate to propionate were the lowest for 1×-CON cows compared with other treatments. Dry matter intake and milk yield were similar among the groups. Milk fat content and yield decreased with 1×-CON treatment, but supplementing YO numerically increased milk fat for cows fed 1×. These results suggest that decreasing FF from 3× to 1× daily increases meal length, particularly after feed delivery, in cows fed high-forage diets; but supplementation of plant oil changes feeding patterns and may improve ruminal pH and milk fat in cows fed once a day.


Subject(s)
Cattle/physiology , Dietary Fats, Unsaturated/administration & dosage , Feeding Behavior/physiology , Fermentation , Lactation/physiology , Rumen/metabolism , Animal Feed/analysis , Animals , Behavior, Animal/physiology , Diet/veterinary , Dietary Supplements , Digestion , Eating , Female , Milk/chemistry , Time Factors
11.
PLoS One ; 15(4): e0231516, 2020.
Article in English | MEDLINE | ID: mdl-32298315

ABSTRACT

The aim of this study was to evaluate the effects of medicinal herbal mixtures rich in phenolic, flavonoid and alkaloid compounds on ruminal fermentation and microbial populations, and fatty acid (FA) concentrations and lipid oxidation in tissues of lambs infected with the gastrointestinal nematode (GIN) parasite (Haemonchus contortus). Parallel in vitro and in vivo studies were performed using two different herbal mixtures (Mix1 and Mix2). The in vitro study was conducted in a 2 (infection status; non-infected versus infected) × 3 (diets; control, Mix1 and Mix2) factorial design. In the in vivo study, 24 lambs were equally divided into four treatments: non-infected lambs fed a control diet, infected lambs fed the control diet, infected lambs fed a diet with Mix1 and infected lambs fed a diet with Mix2. Herbal mixtures (100 g dry matter (DM)/d) were added to the basal diets of meadow hay (ad libitum) and a commercial concentrate (500 g DM/d). The experimental period lasted for 70 days. Ruminal fermentation characteristics and methane production were not affected by infection in vivo or in vitro. Both herbal mixture supplementation increased total volatile fatty acid (VFA) concentrations (P < 0.01) and DM digestibility (P < 0.01) in vitro. Archaea population was slightly diminished by both herbal mixtures (P < 0.05), but they did not lower methane production in vitro or in vivo (P > 0.05). Infection of H. contortus or herbal mixtures modulated FA proportion mainly in the liver, especially the long chain FA proportion. Concentrations of thiobarbituric acid reactive substances (TBARS) in serum were significantly higher after 70 days post-infection in the infected lambs. Herbal Mix1 supplementation reduced TBARS concentrations in meat after seven days of storage. In conclusion, supplementing of herbal mixtures to the diets of GIN parasite infected lambs did not affect the basic ruminal fermentation parameters. Herbal mixtures may improve few FA proportions mainly in liver as well as decrease lipid oxidation in meat.


Subject(s)
Dietary Supplements , Fermentation/drug effects , Gastrointestinal Microbiome/drug effects , Haemonchiasis/veterinary , Haemonchus , Lipid Metabolism/drug effects , Plants, Medicinal/metabolism , Rumen/metabolism , Sheep Diseases/parasitology , Animals , Diet/veterinary , Fatty Acids/metabolism , Female , Haemonchiasis/metabolism , Rumen/microbiology , Rumen/parasitology , Sheep/metabolism , Sheep/microbiology , Sheep/parasitology , Sheep Diseases/metabolism
12.
J Anim Sci Biotechnol ; 10: 86, 2019.
Article in English | MEDLINE | ID: mdl-31827785

ABSTRACT

BACKGROUND: The present study aimed at investigating the influence of 90% menthol-containing plant bioactive lipid compounds (PBLC, essential oils) on growth performance, blood haematological and biochemical profile, and nutrient absorption in sheep. Twenty-four growing Suffolk sheep were allotted into three dietary treatments: Control (without PBLC), lower dose of PBLC (PBLC-L; 80 mg/d) and higher dose of PBLC (PBLC-H; 160 mg/d). Sheep in all groups were fed meadow hay ad libitum plus 600 g/d of concentrate pellets for 28 d. RESULTS: Average daily gain was not affected by treatment. Feeding of PBLC increased hay and total feed intake per kg body weight (P < 0.05). Counts of total leucocytes, lymphocytes and monocytes were not different among treatments. However, neutrophil count decreased (P < 0.05) in PBLC-H with a similar trend in PBLC-L (P < 0.10). Concentrations of glucose, bilirubin, triglycerides, cholesterol, urea and magnesium in serum were not different among sheep fed different doses of PBLC. However, serum calcium concentration tended to increase in PBLC-H (P < 0.10) and serum concentrations of aspartate & asparagine (P < 0.01) and glutamate & glutamine (P < 0.05) increased linearly with increasing PBLC dose. In ruminal epithelia isolated from the rumen after killing, baseline conductance (G t; P < 0.05) and short-circuit current (I sc; P < 0.01) increased in both PBLC groups. Ruminal uptakes of glucose and methionine in the presence of Na+ were not affected by the dietary PBLC supplementation. In the absence of Na+, however, glucose and methionine uptakes increased (P < 0.05) in PBLC-H. In the jejunum, I sc tended to increase in PBLC-H (P < 0.10), but baseline G t was not affected. Intestinal uptakes of glucose and methionine were not influenced by PBLC in the presence or absence of Na+. CONCLUSION: The results suggest that menthol-rich PBLC increase feed intake, and passive ion and nutrient transport, the latter specifically in the rumen. They also increased serum concentrations of urea precursor amino acids and tended to increase serum calcium concentrations. Future studies will have to show whether some of these findings might be commonly linked to a stimulation of transient receptor potential (TRP) channels in the gastrointestinal tract.

13.
J Sci Food Agric ; 99(5): 2243-2250, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30324694

ABSTRACT

BACKGROUND: Alfalfa (Medicago sativa) is an important legume used in animal feed. The primary objective of the present study was to analyze and trace the individual saponins in fresh and ensiled alfalfa of ten varieties, with the aim of evaluating the structural changes that saponins undergo during ensiling. A secondary objective was to examine whether any of the changes in saponin content were associated with changes in the basic nutrient composition of the ensiled alfalfa. RESULTS: The total saponin concentration increased when the fresh alfalfa was processed into silage. Three of the zanhic acid glycosides were degraded substantially, whereas the other two increased in all the tested varieties. Five of the seven medicagenic acid glycosides were not changed, whereas the remaining saponins completely disappeared. Finally, two glycosides of soyasapogenol B displayed an inverse relationship to each other. CONCLUSION: The nutrient content of fresh material and silages remained relatively constant, with some variations in the crude protein content of the selected alfalfa varieties. The total concentration of saponins increased two- to three-fold after ensilation over the levels present in fresh alfalfa material. The increases in saponin concentration showed a negative linear relationship between protein on a dry matter basis and saponin content. These findings are significant because no known published data have shown this transformation in the ensiling of alfalfa. © 2018 Society of Chemical Industry.


Subject(s)
Medicago sativa/chemistry , Plant Extracts/chemistry , Saponins/chemistry , Silage/analysis , Glycosides/chemistry
14.
J Anim Sci ; 96(11): 4868-4881, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30085144

ABSTRACT

Active plant metabolites (APM) are recognized as modifiers of ruminal microbial fermentation including methanogenesis and biohydrogenation of fatty acids (FA). Coleus amboinicus Lour. leaves (CAL) are rich in several APM, which could serve as ruminal fermentation modulators. A phytochemical analysis showed that CAL contain phenolic acids (10.4 mg·g-1 dry matter [DM]; high in rosmarinic acid), flavonoids (2.6 mg·g-1 DM), diterpenes (2 mg·g-1 DM), and linolenic acid (35.4 g (100 g)-1 FA). This study aimed to investigate the effect of CAL on ruminal methanogenesis and biohydrogenation as well as basic fermentation characteristics and microbial populations. The in vitro experiment was carried out using Hohenheim gas test system with 40 mL of buffered ruminal fluid incubated for 24 h at 39 °C in anaerobic conditions. Approximately 400 mg (DM basis) of total mixed ration (TMR) was used as a control substrate and the CAL substrate was used at doses of 10, 20, 40, and 80 mg DM replacing equal amounts of TMR. Addition of CAL decreased methane production up to 30% linearly as the amount of CAL increased (P < 0.05). In vitro dry matter digestibility and ammonia tended to increase with increasing doses of CAL. Concentration of total volatile fatty acids was not affected by the CAL although there appeared to be a minor positive linear trend; however, acetate, butyrate, and isobutyrate proportion increased quadratically (P < 0.001). CAL tended to linearly increase α-linolenic acid and conjugated linoleic acid as well as increased stearic acid concentration in buffered ruminal fluid. CAL particularly increased total protozoa and bacterial populations during fermentation, but inhibited methanogens. It is concluded that the CAL may be promising to be used as a feed additive to decrease methanogenesis as well as biohydrogenation of FA in the rumen.


Subject(s)
Coleus/chemistry , Dietary Supplements , Fatty Acids/metabolism , Methane/metabolism , Plant Preparations/pharmacology , Animals , Diet/veterinary , Digestion/drug effects , Fatty Acids, Volatile/analysis , Female , Fermentation/drug effects , Hydrogenation , Hydroxybenzoates/analysis , Plant Leaves/chemistry , Plant Preparations/chemistry , Rumen/metabolism , Rumen/microbiology , Rumen/parasitology
15.
Molecules ; 23(5)2018 05 11.
Article in English | MEDLINE | ID: mdl-29751626

ABSTRACT

The aim of the study was to estimate the influence of the different levels of Cu, Zn, and Mn nanoparticles on the activity of aminopeptidases in turkey. An experiment was carried out on 144 turkey hen Hybrid Converter. The birds were divided into groups given standard- and nanoparticle-supplementation of different level of copper (Cu 20, 10, 2 mg/kg), zinc (Zn 100, 50, 10 ppm), and manganese (Mn 100, 50, 10 ppm), covering respectively 100%, 50%, and 10% of the physiological demands for those minerals in the diet. The activity of aminopeptidases (alanyl: AlaAP, leucyl: LeuAP and arginyl: ArgAP) after supplementation of minerals was determined in the breast and thigh turkey muscle. The strongest effect of interaction among minerals supplementation form and dose on the activity levels of the aminopeptidases in thigh muscle was observed for nano-Cu already at the lowest dose of 2 mg/kg. In this dose (covering 10% of the birds' demand) nano form of supplementation significantly increased the activity of Ala-, Leu-, and ArgAP (877, 201, and 719, respectively), compared to standard form of supplementation (461, 90.5, and 576, respectively). In turn, in breast muscle, after supplementation covering 10% of the demand with the nano-Cu, nano-Zn, and nano-Mn compared to the standard form, we did not observe any significant difference in the activity levels of any of the investigated aminopeptidases, except for AlaAP under Zn supplementation. Supplementation with the 20 mg/kg of Nano-Cu (100% of demand) and with 10 mg/kg of Nano-Cu (50% of demand) inhibited the activity of all of the three aminopeptidases in thigh muscle. Supplementation of the minerals in nano form into the diet, especially of Cu and Zn in the dose covering 10% of the demand is relevant to maintain homeostasis in turkey muscles, as indicated by the activity of the aminopeptidases.


Subject(s)
Aminopeptidases/chemistry , Aminopeptidases/metabolism , Animal Feed/analysis , Copper/chemistry , Manganese/chemistry , Zinc/chemistry , Animals , Turkeys
16.
Nat Prod Commun ; 8(12): 1687-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24555273

ABSTRACT

Three new triterpenoid saponins (1-3), along with nine known saponins, were isolated from the roots of Saponaria officinalis L. Two of them: vaccaroside D (4) and dianchinenoside B (5) are known, but not previously reported for S. officinalis, and seven others: saponarioside C (6), D (7), F (8), G (9), I (10), K (11), and L (12) have been previously isolated from this plant. The structures of the new saponins were established as 3-O-beta-D-xylopyranosyl-16alpha-hydroxygypsogenic acid-28-O-[beta-D-glucopyranosyl-(1 -->6)-beta-D-glucopyranoside (1), 3-O-beta-D-xylopyranosyl-16alpha-hydroxygypsogenic acid-28-O-[beta-D-glucopyranosyl-(1-->3)]-[alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (2) and 3-O-beta-D-xylopyranosyl-gypsogenic acid-28-O-[beta-D-glucopyranosyl-(1-->3)]-[6-O-(3-hydroxy-3-methylglutaryl)-beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (3). Their structures were elucidated by extensive spectroscopic methods, including 1D- (1H, 13C) and 2D-NMR (D QF-COSY, TOCSY, ROESY, HSQC and HMBC) experiments, as well as high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), ESI-MS/MS and acid hydrolysis.


Subject(s)
Saponaria/chemistry , Triterpenes/isolation & purification , Molecular Structure , Plant Roots/chemistry , Triterpenes/chemistry
17.
J Sci Food Agric ; 91(11): 2031-7, 2011 Aug 30.
Article in English | MEDLINE | ID: mdl-21480279

ABSTRACT

BACKGROUND: Camelina sativa cake (CSC), a rich source of unsaturated fatty acids, in the case of ruminants, may improve the energy value of a diet and also increase the unsaturated fatty acid content in milk. Effects of basal diet (control), basal diet plus 30 g kg(-1) of CSC in dietary dry matter (DM), basal diet plus 60 g kg(-1) of CSC in dietary dry matter on milk production and the fatty acid composition of ewe's milk with particular emphasis on the monoenes and conjugated isomers of linoleic acid content were examined. RESULTS: Elevated concentration of total monounsaturated fatty acids, the effect of an increase in monounsaturated fatty acids in the trans configuration, as well as the increased content of total polyunsaturated fatty acids, resulted from CSC supplementation. Total saturated fatty acid concentration was decreased. CONCLUSION: Milk from CSC-supplemented ewes was characterized by increased levels of beneficial nutritional factors, including mono- and n-3 polyunsaturated fatty acids, and was also by lower atherogenic and thrombogenic indices. Taking into consideration all the obtained results and recommended fat concentrations in a daily ruminant ration, we recommend supplementing a dairy ewe's diet with 30 g kg(-1) DM of CSC cake in practice.


Subject(s)
Brassicaceae/chemistry , Dietary Supplements , Fatty Acids, Unsaturated/metabolism , Milk/metabolism , Plant Components, Aerial/chemistry , Sheep, Domestic/metabolism , Animals , Dairying/economics , Dietary Supplements/analysis , Dietary Supplements/economics , Fatty Acids, Monounsaturated/analysis , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/chemistry , Female , Food-Processing Industry/economics , Industrial Waste/analysis , Industrial Waste/economics , Lactation , Linoleic Acids, Conjugated/analysis , Linoleic Acids, Conjugated/chemistry , Linoleic Acids, Conjugated/metabolism , Random Allocation , Stereoisomerism , Trans Fatty Acids/analysis , Trans Fatty Acids/chemistry , Trans Fatty Acids/metabolism
18.
Berl Munch Tierarztl Wochenschr ; 118(9-10): 430-5, 2005.
Article in English | MEDLINE | ID: mdl-16206933

ABSTRACT

In vitro anaerobic incubations were used to determine the effect of different oils (LO-linseed, SO-sunflower, FO-fish oil) on trans fatty acid production in rumen fluid and to test if combining of monensin (MON) with the oils affects the interactions on trans fatty acid concentrations in mixed cultures of ruminal microorganisms. Two different sources of rumen fluid were used; the inoculum from the sheep fed hay and barley (80:20%)--the inoculum A and the inoculum from the sheep fed alfalfa and barley (80:20 %)--the inoculum B. The analyses showed that inoculum B contained more short chain fatty acids (SCFA), medium chain fatty acids (MCFA) and saturated fatty acids (SFA) than inoculum A. In contrast, inoculum A contained more unsaturated fatty acids (UFA) than inoculum B. The results show, that the oils affected the biohydrogenation of fatty acids (FA) by increasing the concentration of C18:0 (3-7 times) and trans C18:1 isomers (2-9 times). The concentration of two main intermediates of FA biohydrogenation-- cis 9, trans 11 C18:2 (CLA) and trans 11C18:1 (TVA) were increased with the oils, but FO was more efficient than other plant oils on CLA and TVA production. The monensin treatment had similar effect on FA metabolism as the oil treatment in comparison to unincubated control. The interactions of monensin treatment with the oils were characterized with decrease (LO+MON, SO+MON) or increase (FO+MON) of the proportions of C18:0 and trans C18:1 isomers in comparison to oil treatment. The highest concentrations of two main isomers--CLA,TVA were found in the samples containing fish oil and monensin. In conclusion, fish oil treatment and monensin with fish oil treatment was more efficient than other plant oils in the effect on trans fatty acid production (mainly CLA and TVA) in fermentation fluid in vitro.


Subject(s)
Fish Oils/pharmacology , Linseed Oil/pharmacology , Plant Oils/pharmacology , Rumen/metabolism , Trans Fatty Acids/biosynthesis , Animal Feed , Animals , Bioreactors , Drug Synergism , Fermentation , Fish Oils/chemistry , In Vitro Techniques , Linseed Oil/chemistry , Monensin/pharmacology , Plant Oils/chemistry , Rumen/chemistry , Rumen/microbiology , Sheep , Sunflower Oil , Trans Fatty Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL