Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Sensors (Basel) ; 23(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36679364

ABSTRACT

This paper proposes a new optical biosensor composed of a silicon-on-insulator (SOI) p-n junction photodiode (PD) with a surface plasmon (SP) antenna. When the phase-matching condition between two lateral wavelengths of the diffracted light from the SP antenna and the waveguiding mode in the SOI PD is satisfied, we observe sharp peaks in the spectroscopic light sensitivity. Since the peak wavelength depends on the RI change around the SP antenna corresponding to the phase-matching condition, the SOI PDs with an SP antenna can be applied to the optical biosensor. The RI detection limit is evaluated in the measurements with bulk solutions, and 1.11 × 10-5 RIU (refractive index unit) can be obtained, which is comparable to that of a surface plasmon resonance (SPR) sensor, which is well known as a representative optical biosensor. In addition, the response for intermolecular bonds is estimated by the electromagnetic simulations using the finite-difference time-domain (FDTD) method to clarify its ability to detect biomolecular interactions. The results of this paper will provide new ground for high-throughput label-free biosensing, since a large number of SOI PDs with an SP antenna can be easily integrated on a single chip via an SOI complementary metal-oxide-semiconductor (CMOS) fabrication process.


Subject(s)
Biosensing Techniques , Silicon , Silicon/chemistry , Refractometry , Surface Plasmon Resonance , Silicon Dioxide
2.
Vaccine ; 35(18): 2404-2412, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28365253

ABSTRACT

A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application. Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301nm light that costs less than $4000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic.


Subject(s)
Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Injections, Intradermal/methods , Lasers, Semiconductor , Low-Level Light Therapy/methods , Vaccination/methods , Animals , Female , Low-Level Light Therapy/instrumentation , Mice, Inbred C57BL , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL