Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Hum Genomics ; 13(1): 28, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31196165

ABSTRACT

BACKGROUND: Adjuvant radiotherapy (RT) can increase the risk of developing pain; however, the molecular mechanisms of RT-related pain remain unclear. The current study aimed to identify susceptibility loci and enriched pathways for clinically relevant acute post-RT pain, defined as having moderate to severe pain (pain score ≥ 4) at the completion of RT. METHODS: We conducted a genome-wide association study (GWAS) with 1,344,832 single-nucleotide polymorphisms (SNPs), a gene-based analysis using PLINK set-based tests of 19,621 genes, and a functional enrichment analysis of a gene list of 875 genes with p < 0.05 using NIH DAVID functional annotation module with KEGG pathways and GO terms (n = 380) among 1112 breast cancer patients. RESULTS: About 29% of patients reported acute post-RT pain. None of SNPs nor genes reached genome-wide significant level. Four SNPs showed suggestive associations with post-RT pain; rs16970540 in RFFL or near the LIG3 gene (p = 1.7 × 10-6), rs4584690, and rs7335912 in ABCC4/MPR4 gene (p = 5.5 × 10-6 and p = 7.8 × 10-6, respectively), and rs73633565 in EGFL6 gene (p = 8.1 × 10-6). Gene-based analysis suggested the potential involvement of neurotransmitters, olfactory receptors, and cytochrome P450 in post-RT pain, whereas functional analysis showed glucuronidation (FDR-adjusted p value = 9.46 × 10-7) and olfactory receptor activities (FDR-adjusted p value = 0.032) as the most significantly enriched biological features. CONCLUSIONS: This is the first GWAS suggesting that post-RT pain is a complex polygenic trait influenced by many biological processes and functions such as glucuronidation and olfactory receptor activities. If validated in larger populations, the results can provide biological targets for pain management to improve cancer patients' quality of life. Additionally, these genes can be further tested as predictive biomarkers for personalized pain management.


Subject(s)
Breast Neoplasms/radiotherapy , Genetic Predisposition to Disease , Pain/genetics , Radiation Injuries/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/complications , Breast Neoplasms/genetics , Calcium-Binding Proteins/genetics , Cell Adhesion Molecules/genetics , DNA Ligase ATP/genetics , Female , Genome-Wide Association Study , Humans , Middle Aged , Multidrug Resistance-Associated Proteins/genetics , Pain/etiology , Pain/pathology , Poly-ADP-Ribose Binding Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Prospective Studies , Quality of Life , Radiation Injuries/pathology , Radiotherapy , Signal Transduction/radiation effects
2.
Radiat Environ Biophys ; 53(3): 621-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24792319

ABSTRACT

Radiation therapy-induced acute and late effects, particularly skin toxicities, have significant impact on cancer patients' quality of life and long-term survival. To date, no effective topical agents have been routinely used in the clinical setting to prevent skin toxicity. Using SKH-hr1 hairless mice, we investigated two complementary and alternative medicine in their effects on inflammation and ionizing radiation (IR)-induced skin toxicity: Calendula officinalis (CO) and Ching Wan Hung (CWH). They were applied immediately following each IR dosing of 10 Gy/day for 4 days. Skin toxicity and inflammatory factors were evaluated at multiple time points up to 15 days post-radiation. Serum interleukin (IL)-1α, monocyte chemotactic protein-1 (MCP1), keratinocyte-derived chemokine (KC), and granulocyte colony-stimulating factor (G-CSF) were significantly induced by radiation. Both CO and CWH significantly inhibited IR-induced MCP1 (p < 0.01), KC (p < 0.05), and G-CSF (p < 0.001). IR-induced erythema and blood vessel dilation were significantly reduced by CWH (p < 0.001) but not by CO at day 10 post-IR. Both agents inhibited IR-induced IL-1α (p < 0.01), MCP1 (p < 0.05), and vascular endothelial growth factor (p < 0.05). There were continuous inhibitory effects of CWH on IR-induced skin toxicities and inflammation. In contrast, CO treatment resulted in skin reactions compared to IR alone. Our results suggest that both CO and CWH reduce IR-induced inflammation and CWH reduced IR-induced erythema. In summary, CWH showed promising effects in reducing IR-related inflammation and skin toxicities, and future proof-of-principal testing in humans will be critical in evaluating its potential application in preventing IR-induced skin toxicities.


Subject(s)
Complementary Therapies , Drugs, Chinese Herbal/pharmacology , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/prevention & control , Radiotherapy/adverse effects , Skin/drug effects , Skin/radiation effects , Angiogenesis Inducing Agents/metabolism , Animals , Calendula/chemistry , Dermatitis/etiology , Dermatitis/metabolism , Dermatitis/prevention & control , Female , Mice , Neoplasms/complications , Neoplasms/radiotherapy , Radiation Injuries, Experimental/metabolism , Skin/injuries , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL