Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569337

ABSTRACT

One of the key factors in the pathogenesis of diabetes and its complications is oxidative stress. To inhibit this process, antioxidants may be helpful. Herein, we focused on the protective properties of taxifolin spheroidal form (TS) in the streptozotocin rat model of diabetes mellitus. After 4 weeks of treatment with TS, the fasting blood glucose level of the diabetic animals decreased by 12% compared with the level right after the injection of streptozotocin. While the feed intake in the untreated diabetic rats increased by 5.3% compared with the healthy group, the TS-treated group showed a pronounced 15.3% decrease. Therapeutic administration of TS has a protective effect on the pancreas and the liver against the cytotoxic action of streptozotocin. The plasma antioxidant capacity of all diabetic groups appeared to be approximately 15% lower than in healthy rats with no significant difference between the TS-treated and untreated diabetic animals. Apparently, this can be attributed to taxifolin and plasma proteins binding. These data demonstrate the potential of TS in antidiabetic therapy.


Subject(s)
Diabetes Mellitus, Experimental , Rats , Animals , Streptozocin/pharmacology , Diabetes Mellitus, Experimental/metabolism , Rats, Wistar , Blood Glucose/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Oxidative Stress , Plant Extracts/pharmacology , Liver/metabolism
2.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682702

ABSTRACT

Computer modeling is a method that is widely used in scientific investigations to predict the biological activity, toxicity, pharmacokinetics, and synthesis strategy of compounds based on the structure of the molecule. This work is a systematic review of articles performed in accordance with the recommendations of PRISMA and contains information on computer modeling of the interaction of classical flavonoids with different biological targets. The review of used computational approaches is presented. Furthermore, the affinities of flavonoids to different targets that are associated with the infection, cardiovascular, and oncological diseases are discussed. Additionally, the methodology of bias risks in molecular docking research based on principles of evidentiary medicine was suggested and discussed. Based on this data, the most active groups of flavonoids and lead compounds for different targets were determined. It was concluded that flavonoids are a promising object for drug development and further research of pharmacology by in vitro, ex vivo, and in vivo models is required.


Subject(s)
Computers , Flavonoids , Computer Simulation , Flavonoids/chemistry , Flavonoids/pharmacology , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL