Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Affiliation country
Publication year range
1.
Huan Jing Ke Xue ; 45(5): 2881-2890, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629550

ABSTRACT

Soil microbes are key drivers in regulating the phosphorus cycle. Elucidating the microbial mineralization process of soil phosphorus-solubilizing bacteria is of great significance for improving nutrient uptake and yield of crops. This study investigated the mechanism by which citrus cultivation affects the soil microbial acquisition strategy for phosphorus by measuring the abundance of the phoD gene, microbial community diversity and structure, and soil phosphorus fractions in the soils of citrus orchards and adjacent natural forests. The results showed that citrus cultivation could lead to a decrease in soil pH and an accumulation of available phosphorus in the soil, with a content as high as 112 mg·kg-1, which was significantly higher than that of natural forests (3.7 mg·kg-1). Citrus cultivation also affected the soil phosphorus fractions, with citrus soil having higher levels of soluble phosphorus (CaCl2-P), citrate-extractable phosphorus (Citrate-P), and mineral-bound phosphorus (HCl-P). The phosphorus fractions of natural forest soils were significantly lower than those of citrus soils, whereas the phoD gene abundance and alkaline phosphatase activity were significantly higher in natural forest soils than in citrus soils. High-throughput sequencing results showed that the Shannon diversity index of phosphate-solubilizing bacteria in citrus soils was 4.61, which was significantly lower than that of natural forests (5.35). The microbial community structure in natural forests was also different from that of citrus soils. In addition, the microbial community composition of phosphate-solubilizing bacteria in citrus soils was also different from that of natural forests, with the relative abundance of Proteobacteria being lower in natural forest soils than in citrus soils. Therefore, citrus cultivation led to a shift of soil microbial acquisition strategy for phosphorus, with external phosphorus addition being the main strategy in citrus soils, whereas microbial mineralization of organic phosphorus was the main strategy in natural forest soils to meet their growth requirements.


Subject(s)
Phosphorus , Soil , Soil/chemistry , Soil Microbiology , Bacteria/genetics , Forests , Phosphates , Citrates
2.
Huan Jing Ke Xue ; 34(11): 4482-9, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24455963

ABSTRACT

The sorption and desorption characteristics of four kinds of organic phosphorus with different molecular structures (glycerophosphate (GP), glucose-6-phosphate (G6P), adenosine triphosphate (ATP), and myo-inositol hexakisphosphate (IHP)) on three kinds of aluminum (oxyhydr)oxides (amorphous Al(OH)3, boehmite, and alpha-Al2O3) were studied. The underlying mechanisms were also illustrated. Results showed that the maximum sorption amounts of OP onto Al (oxyhydr)oxides, on a per gram dry weight basis, decreased as following: amorphous Al(OH)3 > boehmite > alpha-Al2O3. This mainly related to the mineral crystallinity and surface heterogeneity. With the exception of sorption of IHP on amorphous Al (OH)3, the maximum sorption density decreased with increasing molecular weight (MW) of OP, following the order: GP > G6P > ATP > IHP. However, the sorption amount of IHP on amorphous Al (OH)3 was much higher than those of other OP, due to the transformation of surface complexes of IHP to surface precipitation and thus enhancing the sorption. The sorption kinetics results showed that sorption of OP underwent the first onset rapid sorption, i. e. a certain amount of sorption occurred within an onset extremely short period, and a following long and slow sorption process. Amorphous Al (OH)3 had the greatest onset rapid sorption density, and the onset rapid sorption density of OP on Al (oxyhydr) oxides decreased with increasing MW. Desorption capacities of OP by KCl and citrate solutions related to the surface affinity between OP and boehmite. Initial desorption percentages by KCl decreased in the order: G6P (10.53%) > GP(6.91%) > ATP (3.06%) > IHP (0.8%). The maximum desorption percentages of OP by citrate were 4-5 times greater than those by KCl. During resorption process of P by KCl, the maximum desorption rate achieved after a fast desorption in a few hours, followed by diffusion-resorption during which the desorption percentage gradually decreased. Specially, both diffusion-resorption and surface precipitation promoted the resorption of IHP on mineral surface. Conclusively, the strong specific sorption of OP occurs on the surface of Al (oxyhydr) oxides, and molecular structure and size of OP as well as the crystallinity and crystal structure of minerals are the key factors affecting the interfacial reactions and environmental behaviors of OP.


Subject(s)
Aluminum Hydroxide/chemistry , Aluminum Oxide/chemistry , Phosphorus/chemistry , Adenosine Triphosphate/chemistry , Adsorption , Glucose-6-Phosphate/chemistry , Glycerophosphates/chemistry , Phytic Acid/chemistry
3.
Chin J Integr Med ; 11(1): 15-21, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15975301

ABSTRACT

OBJECTIVE: To observe the clinical effect of Rebixiao granule (RBXG) in treating repeatedly attacking acute gouty arthritis and through experimental study on blood uric acid to explore RBXG's therapeutic mechanism. METHODS: Ninety repeatedly attacking acute gouty arthritis patients were divided into the treated group (n = 60) and control group (n = 30). The treated group was treated with RBXG, and the control group was treated with Futalin tablets (diclofenac sodium). The baseline treatment including good rest, low purine diet, sufficient water drinking and urine alkalization, etc. was then given to both groups. Hypoxanthine 600 mg/kg and niacin 100 mg/kg was applied to hyperuricemic mice by gastrogavage to establish the animal models. RESULTS: The clinical effective rate of the treated group was 95.0% and that of the control 90.0%. Good therapeutic effects were won, insignificant difference (P > 0.05)was shown between the two groups. However, the cure rate of the treated group was 26.7% while that of the control group was 10.0%, with significant difference (P < 0.01) shown between them. The treated group had its blood uric acid lowered, which was significantly different (P < 0.05) from that of the control group. The animal experiment indicated that all the three groups treated with different dosages of RBXG, as well as the Ash bark and Smilax glabra rhizome groups had their blood uric acid content reduced in the hyperuricemic mice. CONCLUSION: RBXG has a quicker initiation and better treatment effects than sole anti-inflammatory and analgesic agents on the treatment of repeatedly attacking acute gouty arthritis, showing no obvious toxic or adverse reactions and therefore good for long-term administration and likely to be a safe TCM preparation to control the symptoms and reduce the onsets of repeatedly attacking of acute gouty arthritis. The animal experiment shows that both the compound preparation and part of the single ingredients in the recipe have the function of reducing blood uric acid. However, the compound recipe has better therapeutic effects, proving to be superior to single drugs.


Subject(s)
Arthritis, Gouty/blood , Arthritis, Gouty/drug therapy , Drugs, Chinese Herbal/therapeutic use , Uric Acid/blood , Acute Disease , Adult , Aged , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis, Gouty/physiopathology , Diclofenac/therapeutic use , Drugs, Chinese Herbal/pharmacology , Humans , Hyperuricemia/blood , Male , Mice , Mice, Inbred ICR , Middle Aged , Recurrence , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL