Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Inflammopharmacology ; 31(2): 983-996, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36947299

ABSTRACT

Liquiritigenin (LTG) and its bioprecursor isoliquiritigenin(ISL), the main bioactives from roots of Glycyrrhiza genus are progressively documented as a potential pharmacological agent for the management of chronic diseases. The aim of this study was to evaluate the pharmacological potential of liquiritigenin, isoliquiritigenin rich extract of Glycyrrhiza glabra roots (IVT-21) against the production of pro-inflammatory cytokines from activated macrophages as well as further validated the efficacy in collagen-induced arthritis model in rats. We also performed the safety profile of IVT-21 using standard in-vitro and in-vivo assays. Results of this study revealed that the treatment of IVT-21 and its major bioactives (LTG, ISL) was able to reduce the production of pro-inflammatory cytokines (TNF-α, IL-6) in LPS-activated primary peritoneal macrophages in a dose-dependent manner compared with vehicle-alone treated cells without any cytotoxic effect on macrophages. In-vivo efficacy profile against collagen-induced arthritis in Rats revealed that oral administration of IVT-21 significantly reduced the arthritis index, arthritis score, inflammatory mediators level in serum. IVT-21 oral treatment is also able to reduce the NFкB-p65 expression as evidence of immunohistochemistry in knee joint tissue and mRNA level of pro-inflammatory cytokines in paw tissue in a dose-dependent manner when compared with vehicle treated rats. Acute oral toxicity profile of IVT-21 demonstrated that it is safe up to 2000 mg/kg body weight in experimental mice. This result suggests the suitability of IVT-21 for further study in the management of arthritis and related complications.


Subject(s)
Arthritis, Experimental , Glycyrrhiza , Rats , Mice , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Plant Extracts/therapeutic use , Glycyrrhiza/metabolism , Cytokines/metabolism , Macrophages
2.
Inflammopharmacology ; 31(1): 451-464, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36595125

ABSTRACT

The needle powder of Taxus wallichiana is in use for the management of diabetes and inflammation-related complications in the Indian and Chinese Systems of Traditional Medicine but the lack of proper pharmacological intervention has prompted us to investigate the pharmacological mechanism against inflammation-induced insulin resistance in high-fat diet-fed C57BL/6 mice. Hexane (Tw-H), chloroform (Tw-C), and ethyl acetate (Tw-EA) extracts were prepared from a needle of T. wallichiana and its effect on glucose uptake against TNF-α-induced insulin resistance in skeletal muscle cells was studied. Among all, Tw-EA extract has shown promising glucose uptake potential. Tw-EA treatment is also able to decrease the lipid accumulation in adipocytes. Chemical signature of Tw-EA using HPLC showed the presence of taxoids. Efficacy of taxoids-rich extract from T. wallichiana (Tw-EA) was further validated in in vivo system against high-fat diet (HFD)-induced insulin resistance in C57BL/6 mice. Oral treatment of Tw-EA showed significant reduction in blood glucose, pro-inflammatory cytokine production and body weight gain when compared with vehicle-treated HFD-induced insulin resistance in C57BL/6 mice. Histopathology and immunohistochemistry study in skeletal muscle and adipose tissue revealed that oral treatment of Tw-EA is able to reduce the infiltration of inflammatory cells in skeletal muscles, ameliorate the hypertrophy in adipose tissue and upregulate the GLUT4 protein expression. Treatment with Tw-EA significantly up-regulated mRNA expression of insulin signaling pathway (IRS-1, PI3K, AKT, GLUT 4). This study suggested the beneficial effect of taxoids-rich extract from Taxus wallichiana against the inflammation-associated insulin resistance condition.


Subject(s)
Insulin Resistance , Taxus , Mice , Animals , Insulin Resistance/physiology , Diet, High-Fat , Taxus/metabolism , Taxoids/therapeutic use , Mice, Inbred C57BL , Inflammation/drug therapy , Insulin/metabolism , Blood Glucose/metabolism
3.
Planta Med ; 89(1): 62-71, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36167313

ABSTRACT

This study aims to explore the possible pharmacological potential of Cleome viscosa Linn (Cleomaceae), an annual weed, into therapeutic value-added products. In the present study, we have explored the pharmacological and toxicological profile of coumarinolignoids isolated from Cleome viscose for the management of rheumatoid arthritis and related complications in a small animal model. To avoid the biasness during experiments on animals, we have coded the isolated coumarinolignoids as CLIV-92 to perform the experimental pharmacological study. CLIV-92 was orally administrated (30,100, 300 mg/kg) to animal models of collagen-induced arthritis (CIA), carrageenan-induced acute inflammation, thermal and chemical-induced pain, and Brewer's yeast-induced pyrexia. Oral administration of CLIV-92 significantly decreases the arthritis index, arthritis score, and increases the limb withdrawal threshold in the CIA model in experimental rats. The anti-arthritis studies revealed that the anti-inflammatory effect of CLIV-92 was associated with inhibition of the production of inflammatory mediators like TNF-α, IL-6, IL-17A, MMP-1, MMP-9, Nitric oxide, and C-RP in CIA rat's serum, and also reduced the NFкB-p65 expression as evidence of immunohistochemistry in knee joint tissue of CIA rats, in a dose-dependent manner. Further individual experiments related to arthritis-related complications in experimental animals demonstrated the analgesic, anti-inflammatory, and antipyretic potential of CLIV-92 in a dose-dependent manner. Further, an in-vivo acute oral toxicity study concluded that CLIV-92 is safe in experimental animals up to 2,000 mg/kg dose. The results of this study suggested that the oral administration of CLIV-92 may be a therapeutic candidate for further investigation in the management of rheumatoid arthritis and related complications.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Cleome , Rats , Animals , Cleome/metabolism , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Analgesics/therapeutic use , Cytokines/metabolism
5.
Nucleus (Calcutta) ; 65(3): 303-320, 2022.
Article in English | MEDLINE | ID: mdl-36407558

ABSTRACT

The positive effect of herbal supplements on aging and age-related disorders has led to the evolution of natural curatives for remedial neurodegenerative diseases in humans. The advancement in aging is exceedingly linked to oxidative stress. Enhanced oxidative stress interrupts health of humans in various ways, necessitating to find stress alleviating herbal resources. Currently, minimal scientifically validated health and cognitive booster resources are available. Therefore, we explored the impact of plant extracts in different combinations on oxidative stress, life span and cognition using the multicellular transgenic humanized C. elegans, and further validated the same in Mus musculus, besides testing their safety and toxicity. In our investigations, the final product-the HACBF (healthy ageing cognitive booster formulation) thus developed was found to reduce major aging biomarkers like lipofuscin, protein carbonyl, lipid levels and enhanced activity of antioxidant enzymes. Further confirmation was done using transgenic worms and RT-PCR. The cognitive boosting activities analyzed in C. elegans and M. musculus model system were found to be at par with donepezil and L-dopa, the two drugs which are commonly used to treat Parkinson's and Alzheimer's diseases. In the transgenic C. elegans model system, the HACBF exhibited reduced aggregation of misfolded disease proteins α-synuclein and increased the health of nicotinic acetylcholine receptor, levels of Acetylcholine and Dopamine contents respectively, the major neurotransmitters responsible for memory, language, learning behavior and movement. Molecular studies clearly indicate that HACBF upregulated major genes responsible for healthy aging and cognitive booster activities in C. elegans and as well as in M. musculus. As such, the present herbal product thus developed may be quite useful for healthy aging and cognitive boosting activities, and more so during this covid-19 pandemic. Supplementary Information: The online version contains supplementary material available at 10.1007/s13237-022-00407-1.

6.
Front Plant Sci ; 13: 960717, 2022.
Article in English | MEDLINE | ID: mdl-36226284

ABSTRACT

The global population is rising at an alarming rate, which is threatening food and nutritional security. Although chemical fertilizers and pesticides are important for achieving food security, their excessive usage critically affects soil health and adds up residues in the food chain. There is an increasing interest in identifying eco-friendly farm inputs that can improve crop productivity through sustainable agricultural practices. One of the most common approaches to reducing chemical inputs in agriculture is the use of plant growth regulators (PGRs). Here, we demonstrate the benefits of a natural and novel plant growth enhancer "calliterpenone," isolated from Callicarpa macrophylla, a medicinal plant, for increasing crop productivity in six crops, viz., rice, wheat, potato, tomato, chickpea, and onion. Results revealed that the application of calliterpenone (foliar spraying or seed soaking) enhanced the yield of rice (28.89%), onion (20.63%), potato (37.17%), tomato (28.36%), and chickpea (26.08%) at 0.001 mM and of wheat (27.23%) at 0.01 mM concentrations in comparison to control. This enhancement in yield was reflected through improvements in its growth attributes, viz., spike length, tillers plant-1, seeds spike-1, plant height, and biomass. Furthermore, the exogenous application of calliterpenone could increase the endogenous level of indole-3-acetic acid (IAA) in all tested crops and decrease the content of abscisic acid (ABA) in a few. Trials conducted at farmers' fields showed an overall ~12% increase in rice yield (mean of 11 farmers' fields ranging from 3.48 to 19.63%) and ~10% increase in wheat yield (ranging from 3.91 to 17.51%). The 0.001 mM of calliterpenone was the best effective dose for most crops except wheat, where a concentration of 0.01 mM was found to be the most optimal. This study indicates that calliterpenone is a natural plant growth promoter that can be used in boosting the yields of multiple crops and would be an important input component of organic farming.

7.
Food Chem ; 396: 133647, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35820286

ABSTRACT

Marigold (Tagetes erecta L.) petals are the primary industrial source of lutein, which is used as a colouring agent and nutrient supplement to foods. This research extracted marigold petals using different solvents, covering conventional and non-toxic green solvents. The oleoresin, free lutein, and recrystallized lutein yields varied from 8.47-16.67%, 2.56-9.62%, and 1.11-1.61%, respectively. The purity of lutein was achieved up to 92.57% and 97.64% in conventional and newly established green methods, respectively. The present study described an efficient green process to isolate lutein with significantly improved yield (2.56%) and purity (97.33%) over the conventional methods. Based on the results, 2-methyltetrahydrofurancould be a practical green alternative to the traditional toxic solvents for the processing of lutein. Further, the chemical analysis of the essential oil of the residual receptacles obtained after removing petals revealed the presence of important organic volatiles, including piperitone (54.7%) and piperitenone oxide (6.5%), indicating its usefulness for value-addition.


Subject(s)
Calendula , Tagetes , Flowers/chemistry , Lutein/chemistry , Solvents , Tagetes/chemistry
8.
Nat Prod Res ; 36(17): 4439-4442, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34570617

ABSTRACT

Ravenia spectabilis Engl. belongs to the family Rutaceae is known to possess several biologically active phytomolecules. This study was planned to investigate the chemical composition and antimicrobial activity of the leaf essential oil of R. spectabilis. The hydrodistillation of fresh leaves of R. spectabilis gave 0.19 ± 0.02% essential oil. The resulting essential oil was analysed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Altogether, thirty-one constituents forming 97.6 ± 1.72% of the total oil composition were identified. Major components of the oil were sabinene (60.8 ± 0.36%), α-pinene (5.4 ± 0.30%), myrcene (4.8 ± 0.25%), δ-3-carene (4.7 ± 0.62%) and ß-pinene (4.3 ± 0.17%). The in-vitro antimicrobial potential of the oil was examined against eight human pathogenic bacterial and fungal strains. The essential oil showed significant activity against Staphylococcus aureus, Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Candida albicans, and Candida kefyr. This is the first report on R. spectabilis leaf essential oil composition and its antimicrobial activity. The essential oil could be a promising natural source of sabinene and antimicrobial for developing new phytotherapeutics.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Oils, Volatile , Rutaceae , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Candida albicans , Gas Chromatography-Mass Spectrometry , Humans , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Plant Leaves/chemistry , Rutaceae/chemistry
9.
Chem Biodivers ; 18(11): e2100531, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34669255

ABSTRACT

Artemisia pallens Wall. ex DC., popularly known as davana, has gained considerable attention because of its unique fragrance, high economic value, and pharmacological properties. The compositional complexity of davana essential oil (DO) has been a challenge for quality control. In this study, the chemical profile of DO was developed using polarity-based fractionation and a combination of gas chromatographic (GC-FID), hyphenated chromatographic (GC/MS), and spectroscopic (Fourier-Transform Infra-Red, 1D, 2D-Nuclear Magnetic Resonance) techniques. The analysis led to the identification of ninety-nine compounds. Major components of the DO were cis-davanone (D3, 53.0 %), bicyclogermacrene (6.9 %), trans-ethyl cinnamate (4.9 %), davana ether isomer (3.4 %), spathulenol (2.8 %), cis-hydroxy davanone (2.4 %), and trans-davanone (2.1 %). The study led to identifying several co-eluting novel minor components, which could help determine the authenticity of DO. The rigorous column-chromatography led to the isolation of five compounds. Among these, bicyclogermacrene, trans-ethyl cinnamate, and spathulenol were isolated and characterized by spectroscopic methods for the first time from DO. Pharmacological profile revealed that the treatment of DO and D3 inhibited the production of pro-inflammatory cytokines (TNF-α, IL-6) induced by lipopolysaccharide (LPS) in primary macrophages without any cytotoxic effect after administration of their effective concentrations. The result of this study indicates the suitability of DO and D3 for further investigation for the treatment of chronic skin inflammatory conditions.


Subject(s)
Artemisia/chemistry , Cytokines/antagonists & inhibitors , Macrophages/drug effects , Oils, Volatile/pharmacology , Sesquiterpenes/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Female , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification
10.
Nat Prod Res ; 35(4): 690-695, 2021 Feb.
Article in English | MEDLINE | ID: mdl-30964333

ABSTRACT

Present study was aimed to investigate the antibacterial activity, bactericidal mechanism of action, killing kinetics and anti-inflammatory activity of Isodon melissoides (Benth.) H. Hara essential oil. The gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of carvacrol (45.4%), p-cymene (11.6%) and thymol (11.3%) as major constituents of the oil. The oil displayed broad spectrum significant antibacterial activity (MIC: 0.13-8.33 ppm; MBC: 0.13->33.34 ppm) against test strains. The oil exhibited a time and dose-dependent bactericidal effect. The oil disrupted the cell membrane by changing the cell membrane permeability. The essential oil significantly decreased the overproduction of proinflammatory cytokines in LPS-induced inflammation in HaCaT cells without any cytotoxic effect. I. melissoides essential oil can be a promising alternative antimicrobial agent for the control of methicillin resistant staphylococci and other pathogenic bacteria tested, and also useful for the topical anti-inflammatory properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Isodon/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Bacteria/drug effects , Cymenes/pharmacology , DNA/metabolism , Gas Chromatography-Mass Spectrometry , HaCaT Cells , Humans , Kinetics , Microbial Sensitivity Tests , Plant Extracts/pharmacology , RNA/metabolism , Thymol/pharmacology
11.
Nat Prod Res ; 35(14): 2429-2432, 2021 Jul.
Article in English | MEDLINE | ID: mdl-31578883

ABSTRACT

Chemical investigations on the stem of Cuscuta reflexa Roxb. (Convolvulaceae) led to the isolation of one new compound characterised as 3',4'-dimethoxy-1-phenyl-1α, 2-ethanediol (1), along with eight known compounds as tridecanyl palmitate, palmitic acid, n-pentatriacontane, n-triacont-21, 27-dien-1-ol, kaempherol, chlorogenic acid, 5,7-dimethoxyapigenin and quercitin. The chemical structures were established with the help of physical, chemical and spectroscopic methods. The antimicrobial potential of the new compound (1) was evaluated against three bacterial and three fungal pathogenic strain and showed significant activities.


Subject(s)
Cuscuta/chemistry , Phytochemicals/pharmacology , Plant Stems/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proton Magnetic Resonance Spectroscopy
12.
J Ethnopharmacol ; 261: 113127, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32623016

ABSTRACT

ETHNO-PHARMACOLOGICAL RELEVANCE: Lavender oil (LO) is an aromatic/essential oil extracted from Lavandula angustifolia and traditionally used as an aromatherapy massage oil due to its anti-inflammatory and wound healing property and also for providing the relief in other skin conditions such as psoriasis, dermatitis and eczema. However, LO has not been evaluated scientifically for psoriasis like skin inflammation. AIM OF THE STUDY: This study was aimed to investigate the LO and its major components linalool (L) and linalyl acetate (LA) against psoriasis like skin inflammation. MATERIALS AND METHODS: Anti-psoriatic activity was done using Imiquimod (IMQ) induced psoriasis like skin inflammation in BALB/c mice. Assessment of anti-psoriatic effect of LO, L and LA was done on the basis of change in ear thickness, psoriasis area severity index (PASI) scoring at alternative day, CosCam scoring using skin analyzer equipped with SkinSys software, biochemical, immunohistochemical and histological investigations. Level of effectiveness against psoriasis was investigated by percent reduction in PASI scores, CosCam scores and level of Th-1 and Th-17 cell expressing cytokines, as compared to the diseased mice. RESULTS: Topical application of LO 10% showed 73.67% recovery in PASI and 87% in Th-17 cell-specific cytokines towards normal as compared to disease group. L and LA were identified as the major components of LO and favoured ligands for selected psoriasis targets. At 2% topical dose, L and LA showed 64% and 47.61% recovery in PASI scores, respectively. Both, L and LA showed significant recovery in Th-1 specific TNF-α and IL-1ß however, only L showed significant recovery of Th-17 cytokines (IL-17 and IL-22). In contrast to LA (which restored granulosis), L restored epidermal hyperplasia and parakeratosis toward the normal condition. On the other hand, L also reduced the expression of NF-κß, ccr6 and IL-17, while LA reduced the expression of NF-κß only. At 10% topical dose, LO was observed to be slight irritant while at 2% topical dose, L and LA were found non-irritant to the skin. CONCLUSION: This study proves the effectiveness of LO and its major phytoconstituents linalool and linalyl acetate against IMQ induced psoriasis like skin inflammation and provides the scientific evidence for topical use of lavender oil.


Subject(s)
Acyclic Monoterpenes/pharmacology , Dermatologic Agents/pharmacology , Lavandula , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Psoriasis/prevention & control , Skin/drug effects , Acyclic Monoterpenes/administration & dosage , Acyclic Monoterpenes/isolation & purification , Administration, Cutaneous , Animals , Cytokines/metabolism , Dermatologic Agents/administration & dosage , Dermatologic Agents/isolation & purification , Disease Models, Animal , Female , Imiquimod , Inflammation Mediators/metabolism , Lavandula/chemistry , Mice, Inbred BALB C , Monoterpenes/administration & dosage , Monoterpenes/isolation & purification , Oils, Volatile/administration & dosage , Oils, Volatile/isolation & purification , Plant Oils/administration & dosage , Plant Oils/isolation & purification , Psoriasis/chemically induced , Psoriasis/metabolism , Psoriasis/pathology , Rabbits , Signal Transduction , Skin/metabolism , Skin/pathology
13.
Chem Biol Drug Des ; 95(1): 150-161, 2020 01.
Article in English | MEDLINE | ID: mdl-31585016

ABSTRACT

Prostate cancer is fourth most abundant cancer type around the globe. Brevifoliol, a rearranged taxoid from Taxus walllichiana needles has been derivatized as C5 esters using Steglich esterification reaction. Seventeen diverse analogues were evaluated against a panel of human cancer cell lines by MTT assay. Among these, two of the semi-synthetic analogues, that is, 13 and 16 exhibited potent cytotoxicity, selectively against PC-3, prostate cancer cell lines. In cell cycle analysis, analogue 13 induced S and G2/M phase arrest and induced apoptosis by activating caspase-3. Compound 13 showed moderate efficacy in in-vivo Ehrlich ascites carcinoma in Swiss albino mice. Further, compound 13 was found to be safe in Swiss albino mice up to 1,000 mg/kg dose in acute oral toxicity. Brevifoliol ester 13 may further be optimized for better efficacy.


Subject(s)
Antineoplastic Agents/chemistry , Esters/chemistry , Plant Extracts/chemistry , Prostatic Neoplasms/drug therapy , Taxoids/chemistry , Acetic Acid/chemistry , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzoic Acid/chemistry , Drug Screening Assays, Antitumor , Esterification , Humans , Male , Mice , Molecular Docking Simulation , Neoplasms, Experimental/drug therapy , PC-3 Cells , Plant Extracts/pharmacology , Taxoids/pharmacology , Taxus/chemistry
14.
Food Chem ; 284: 171-179, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-30744843

ABSTRACT

Use of harmful chemicals and expensive maintenance of cold-storage conditions for controlling sprouting are among the major problems in potato storage. Here, 20 essential oils (EOs) were tested for their sprouting-inhibiting and sprouting-inducing activities. Overall, treatments of lemon grass (LG) and clove (CL) oils could induce sprouting whereas palmarosa (PR) and ajwain (AZ) oils could inhibit sprouting of potato tubers at normal-room-temperature (25 ±â€¯2 °C) storage. Selected-EOs treatments affected sprouting by modulation of accumulation of reducing sugars, ethylene, and expression of genes involved in tuber-sprouting such as ARF, ARP, AIP and ERF. Surprisingly, 7-days AZ-treatments could inhibit sprouting for 30-days which was mediated via damaging apical meristem. However, LG- and CL-treated tubers could produce enhanced potato yield as well. Present work clearly demonstrates that selected-EOs can be used as a promising eco-friendly approach for inducing/inhibiting sprouting of potato tubers during potato storage and those enhancing sprouting can be used for enhancing productivity.


Subject(s)
Oils, Volatile/pharmacology , Solanum tuberosum/drug effects , Solanum tuberosum/physiology , Clove Oil/pharmacology , Cymbopogon/chemistry , Gene Expression Regulation, Plant/drug effects , Meristem/drug effects , Plant Tubers/drug effects , Plant Tubers/growth & development , Plant Tubers/metabolism
15.
J Ethnopharmacol ; 230: 1-8, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30342965

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tejovati (Zanthoxylum armatum DC; Family- Rutaceae) popularly known as toothache tree is widely distributed in sub-tropical Himalaya region. Traditionally, The Southeast Asian population of Indo-Nepal origin uses it to treat asthma, gout, pain, and inflammation. The Ayurvedic action of the plant includes the balancing of Vata-Kapha in the body. Which lead to various ailments related to the circulation of blood and water, digestion, immunity, and skin. Therefore, in-vitro xanthine oxidase (XO) inhibition potential of the extract could be worth to explore prospect in the prevention/treatment of gouty affections of the joints and other diseases. AIM OF STUDY: Anti-inflammatory and antioxidant potential of Z. armatum fruit (ZAF) has been reported. To date, no scientific study to validate the claim for gout treatment/management has been attempted so far. The present study deals with the xanthine oxidase inhibitory potential of a various extract of ZAF and marker-based high-performance liquid chromatography (HPLC) standardization of most active fraction. MATERIALS AND METHODS: Liquid-liquid partioning of crude methanol extract of the ZAF followed by repeated column chromatography of most active fraction has resulted in the isolation of seven compounds. Five distinct groups of compounds were isolated, purified, and identified. We have investigated the therapeutic action of ZAF in the management of gout through in-vitro assay of XO, a key enzyme involved in gout pathogenesis. RESULTS: Phytochemical investigation of ZAF has resulted in the isolation of seven compounds of diverse nature. It is noteworthy to mention that out of seven, five compounds have shown the xanthine oxidase inhibitory action. The ethyl acetate fraction was most potent to inhibit XO. The XO inhibitory activity (IC50 values) of isolated marker chemical was ranging from 5.62 to 41.21 µM. Three compounds viz. acetyl phenyl acetate (ZA-2), prudomestin (ZA-6), and tambulin (ZA-7) showed the most potent XO inhibitory activity (IC50 ≈ 6 µM) comparable with a positive control (Allopurinol, IC50, 3.38 µM). This is the first validated HPLC-PDA method for simultaneous analysis and accurate quantification of seven compounds (phenolic acid, acetyl phenyl acetate, xylopyranoside, diphenyl ether and three flavones) in ZAF as well as their distribution in other tissues of the plant. CONCLUSION: Most potent three chemicals (ZA-2, 6 and 7) could be considered as bioactive to ensure the robust quality of the enriched fraction of ZAF with defined XO inhibition potential. Therefore, either single purified component or their enriched fraction could be a better choice for the management of gout than the crude extract of ZAF. Developed HPLC method is suitable for quality assurance analysis and process control of ZAF derived product intended for gout management. XO inhibitory potential exhibited by the characterized compounds validate the traditional use of this ZAF for the treatment of gout. Further, a detailed study is required to assess the effect of ZAF chemicals on serum uric acid and mechanism of XO inhibition.


Subject(s)
Gout Suppressants/pharmacology , Plant Extracts/pharmacology , Xanthine Oxidase/antagonists & inhibitors , Zanthoxylum , Fruit
16.
Front Plant Sci ; 9: 1081, 2018.
Article in English | MEDLINE | ID: mdl-30150996

ABSTRACT

In traditional, herbal medicine, and aromatherapy, use of essential oils and their aroma compounds have been known since long, for the management of various human diseases. The essential oil is a mixture of highly complex, naturally occurring volatile aroma compounds synthesized by medicinal and aromatic plants as secondary metabolites. Essential oils widely used in pharmaceutical, cosmetic, sanitary, food industry and agriculture for their antibacterial, antiviral, antifungal, antiparasitic, insecticidal, anticancer, neuroprotective, psychophysiological, and anti-aging activities. Moreover, volatile aroma compounds comprise a chemically diverse class of low molecular weight organic compounds with significant vapor pressure. However, aroma compounds produced by plants, mainly attract pollinators, seed dispersers and provide defense against pests or pathogens. However, in humans, about 300 active olfactory receptor genes are involved to detect thousands of different aroma compounds and modulates expression of different metabolic genes regulating human psychophysiological activity, brain function, pharmacological signaling, and therapeutic potential. Keeping in mind this importance, present database, namely, AromaDb (http://bioinfo.cimap.res.in/aromadb/) covers information of plant varieties/chemotypes, essential oils, chemical constituents, GC-MS profile, yield variations due to agro-morphological parameters, trade data, aroma compounds, fragrance type, and bioactivity details. The database includes 1,321 aroma chemical structures, bioactivities of essential oil/aroma compounds, 357 fragrance type, 166 commercially used plants, and their high yielding 148 varieties/chemotypes. Also includes calculated cheminformatics properties related to identification, physico-chemical properties, pharmacokinetics, toxicological, and ecological information. Also comprises interacted human genes affecting various diseases related cell signaling pathways correlating the use of aromatherapy. This database could be a useful resource to the plant's growers/producers, an aroma/fragrance industrialist, health professionals, and researchers exploring the potential of essential oils and aroma compounds in the development of novel formulations against human diseases.

17.
Inflammopharmacology ; 26(5): 1245-1255, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29429001

ABSTRACT

BACKGROUND: Curcuma longa L. is an important industrial crop used by medicinal and cosmetic industries in the world. Its leaves are a waste material after harvesting rhizomes. The aim of the study was to evaluate the chemical and pharmacological profile of essential oil from waste leaves of Curcuma longa (EOCl) against skin inflammation. METHODS: EOCl was subjected to gas chromatography (GC) analysis for identification of essential oil constituents and its anti-inflammatory evaluation through in vitro and in vivo models. RESULTS: Chemical fingerprinting using GC and GC-MS analysis of EOCl revealed the presence of 11 compounds, representing 90.29% of the oil, in which terpinolene (52.88%) and α-phellandrene (21.13%) are the major components. In the in vitro testing EOCl inhibited the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) in lipopolysaccharide (LPS) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in the human keratinocyte cell line (HaCaT). Topical application of EOCl produced anti-inflammatory effects by reducing ear thickness, ear weight and ameliorating the level of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) at protein and mRNA levels as well as regulating the overproduction of oxidative markers and restoring the histopathological damage in a TPA-induced mouse model of inflammation. CONCLUSION: These findings of topical anti-inflammatory properties of EOCl provide a scientific basis for medicinal use of this plant material against inflammatory disorders.


Subject(s)
Curcuma/chemistry , Dermatitis/drug therapy , Oils, Volatile/therapeutic use , Plant Leaves/chemistry , Animals , Cell Survival/drug effects , Cells, Cultured , Female , Gas Chromatography-Mass Spectrometry , Humans , Mice , Oils, Volatile/pharmacology , Rabbits , Tetradecanoylphorbol Acetate
18.
Microb Pathog ; 115: 264-271, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29273511

ABSTRACT

The present investigation for the first time explains the anti biofilm and anti virulence potential of Kaffir lime oil (KLO) and its major constituent, Citronellal (3,7-dimethyloct-6-enal) against Xanthomonas oryzae pv. oryzae, causal organism of bacterial blight disease of rice. KLO at 500 ppm showed potential activity against X. oryzae pv. oryzae. Among the major components identified, citronellal (CIT) at 75 µM concentration was found to significantly inhibit biofilm along with the swimming and swarming potential of X. oryzae pv. oryzae. In contrary, CIT did not affect the metabolic status and growth kinetics of the bacterial cells. Gene expression analysis showed down regulation in motA, cheD, cheY, flgF, gumC, xylanase, endogluconase, cellulose, cellobiosidase, virulence and rpfF transcript levels by citronellal treatment. However, an insignificant effect of 75 µM CIT treatment was observed on motB, flgE, pilA, estY, pglA, protease and lytic genes expression. Finally, the observations recorded were in confirmity with the virulence leaf clip test as lesion length was significantly decreased (39%) in CIT treatment as compared to the control leaves inoculated with only X. oryzae pv. oryzae. Overall, the findings obtained advocate the use of CIT for promising anti biofilm and anti virulence activity which in turn can be used for managing the blight disease in rice.


Subject(s)
Aldehydes/pharmacology , Biofilms/growth & development , Citrus/chemistry , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Oryza/microbiology , Plant Oils/pharmacology , Xanthomonas/drug effects , Acyclic Monoterpenes , Gene Expression Regulation, Bacterial/drug effects , Movement/drug effects , Plant Diseases/microbiology , Plant Leaves/microbiology , Virulence Factors/genetics , Xanthomonas/genetics , Xanthomonas/pathogenicity
19.
Phytomedicine ; 34: 85-96, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28899514

ABSTRACT

BACKGROUND: Staphylococcus aureus (SA), is a major human pathogen causing wide range of clinical infections, which has been further complicated by drug resistance like methicillin resistant S. aureus (MRSA), vancomycin intermediate S. aureus (VISA)/vancomycin resistant S. aureus (VRSA), etc. The present study was aimed at determining anti-staphylococcal potential of citral against drug resistant clinical isolates alone and in combination with antibiotics. PURPOSE: To assess the potential of citral in combination with norfloxacin in treating drug resistant infections of SA. STUDY DESIGN: In the present study, synergistic interaction of citral and norfloxacin against drug resistant SA strains was evaluated. Further the efficacy and possible mechanism of action of the combination was also evaluated using in vitro and in vivo assays. METHOD: The anti-staphylococcal activity of each of the monoterpene and the antibiotic was determined in terms of MIC and the effective concentration of both compounds in combination was obtained by checkerboard assay. In vivo efficacy and oral acute toxicity was evaluated in Swiss albino mice model. To understand the mechanism of action, time-kill curve, bacteriolysis, leakage, membrane depolarization, salt tolerance and ethidium bromide efflux assays were performed. RESULTS: Citral was found effective against clinical isolates of SA with MIC values ranging from 75 to 150 µg ml-1 exhibiting bacteriostatic activity. Citral interacted synergistically, reducing MIC of norfloxacin up to 32-folds with FICI ≤ 0.50. Citral did not affect cell wall, but could damage cell membrane, inhibit efflux pump and affect the membrane potential. Citral could reduce the staphylococcal load of spleen and liver tissues in a dose-dependent manner which was further reduced when used in combination with norfloxacin. Citral did not exhibit any mortality or morbidity up to 500 mg kg-1 body weight and found to prolong the post-antibiotic effect of norfloxacin. CONCLUSION: Based on these observations, citral could be a lead candidate phytomolecule for further developing it into an anti-staphylococcal agent. The observations of combination study will help in reducing the burden of antibiotics leading to delayed resistance development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Monoterpenes/pharmacology , Norfloxacin/pharmacology , Acyclic Monoterpenes , Aldehydes/pharmacology , Animals , Drug Synergism , Mice , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy
20.
Biomed Pharmacother ; 92: 772-795, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28591690

ABSTRACT

The genus Cuscuta belonging to the Cuscutaceae family comprises of about 100-170 species spread around the world. Although several species have been studied for their phytochemical characterization and biological activities but still many species are yet unexplored till date. Cuscuta are parasitic plants generally of yellow, orange, red or rarely green color. The Cuscuta species were reported rich in flavonoid and glycosidic constituents along with alkaloids, fatty acids, fixed oil, minerals, essential oil and others phytomolecules also etc. Flavonoids and other molecules of Cuscuta species were reported for different types of biological activities such as antiproliferative activity, antioxidant activity, anti-inflammatory, hepatoprotective, antimicrobial and anxiolytic activity, while some other flavonoids have exhibited potential antiviral and anticancer especially in ovarian and breast cancer activities. This review is an attempt to compile all the available data for the 24 different of Cuscuta species on the basis of different types of phytochemical constituents and biological studies as above.


Subject(s)
Cuscuta/chemistry , Phytochemicals/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL