Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Phytomedicine ; 123: 155277, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128396

ABSTRACT

BACKGROUND: Septic shock, an extremely dangerous condition that causes impairment of organ function, always largely contributes to mortality in intensive care units. The impact of septic shock-induced organ damage on morbidity and mortality is substantially influenced by myocardial dysfunction. However, it remains unclear whether and in what manner anisodamine (654-1/654-2) ameliorates myocardial dysfunction caused by septic shock. PURPOSE: This study is the pioneering investigation and validation about the protective efficacy of anisodamine (654-1/654-2) against LPS-induced myocardial dysfunction in septic shock rats. It also aims to explore the differences in the underlying molecular mechanisms of both drugs. METHODS: A septic shock model was established in SD rats by after tail vein administration of LPS. 64 rats were distributed into eight groups, such as LPS group, control group, LPS+654-1 group (1.25, 2.5, and 5 mg/kg), and LPS+654-2 group (1.25, 2.5, and 5 mg/kg). The hemodynamics, echocardiography, immunohistochemical analysis, TEM, TUNEL assay, and H&E staining were utilized to assess the septic shock model and myocardial function. Lactic acid, inflammatory markers (IL-1ß, IL-6, and TNF-α), endothelial injure markers (SDC-1, HS and TM) and myocardial injury markers (CK, c-TNT and NT-pro BNP) were assessed using ELISA or biochemical kits. Additionally, the mechanisms of 654-1/654-2 were analyzed using RNA-seq and bioinformatics, and validated using western blotting and RT-PCR. RESULTS: Administration of 654-1/654-2 significantly restored hemodynamics and improved myocardial and endothelial glycocalyx injury in septic shock rats. Furthermore, 654-1/654-2 dose-dependently reduced plasma levels of lactic acid, inflammatory cytokines, and markers of endothelial and myocardial injury. Analyses using RNA-seq, WB and RT-PCR techniques indicated that 654-1/654-2 could mitigate myocardial and endothelial injury by inhibiting the NF-κB and NLRP-3 pathways, and activating the PI3K-AKT pathway. CONCLUSIONS: These findings demonstrated that 654-1/654-2 could alleviate myocardial damage in septic shock rats. Specifically, 654-1 inhibited the NF-κB/NLRP-3 pathway, whereas 654-2 promoted the PI3K-AKT pathway and inhibited the NF-κB pathway, effectively mitigating the inflammatory response and cell apoptosis.


Subject(s)
Cardiomyopathies , Shock, Septic , Solanaceous Alkaloids , Rats , Animals , NF-kappa B/metabolism , Shock, Septic/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Lactic Acid/pharmacology
3.
J Agric Food Chem ; 71(41): 15156-15169, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37800952

ABSTRACT

This study was aimed to investigate the therapeutic effect and mechanism of AKHO on 5-fluorouracil (5-FU)-induced intestinal mucositis in mice. Mouse body weight, diarrhea score, and H&E staining were applied to judge the therapeutic effect of AKHO. 16S rDNA and nontargeted metabolomics have been used to study the mechanism. WB, ELISA, and immunohistochemistry were adopted to validate possible mechanisms. The results demonstrated that AKHO significantly reduced diarrhea scores and intestinal damage induced by 5-FU in mice. AKHO lowered the serum levels of LD and DAO, and upregulated the expressions of ZO-1 and occludin in the ileum. Also, AKHO upregulated the abundance of Lactobacillus in the gut and suppressed KEGG pathways such as cortisol synthesis and secretion and arachidonic acid metabolism. Further validation studies indicated that AKHO downregulated the expressions of prostaglandin E2 (PGE2), microsomal prostaglandin E synthase-1 (mPGES-1), and PGE2 receptor EP4, as well as upregulated the expression of glucocorticoid (GC) receptor (GR), leading to improved intestinal epithelial barrier function. Taken together, AKHO elicited protective effects against 5-FU-induced mucositis by regulating the expressions of tight junction proteins via modulation of GC/GR and mPGES-1/PGE2/EP4 pathway, providing novel insights into the utilization and development of this pharmaceutical/food resource.


Subject(s)
Alpinia , Gastrointestinal Microbiome , Mucositis , Oils, Volatile , Mice , Animals , Mucositis/chemically induced , Mucositis/drug therapy , Dinoprostone , Prostaglandin-E Synthases/genetics , Prostaglandin-E Synthases/metabolism , Oils, Volatile/pharmacology , Fluorouracil/adverse effects , Diarrhea
4.
Pharmacol Res ; 197: 106953, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804925

ABSTRACT

Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1ß, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.


Subject(s)
Atherosclerosis , Curcumin , Humans , Endothelial Cells , Curcumin/pharmacology , Curcumin/therapeutic use , Multimorbidity , NF-kappa B , Phosphatidylinositol 3-Kinases , Spices
5.
ACS Appl Mater Interfaces ; 15(29): 34578-34587, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37439604

ABSTRACT

Monitoring the force of fingertip manipulation without disturbing the natural sense of touch is crucial for digitizing the skills of experienced craftsmen. However, conventional force sensors need to be put between the skin and the objects, which affects the natural sense of the skin. Here, we proposed a fingertip force sensing method based on changes of blood volume and designed a wearable photoelectric fingertip force sensing system (PFFS) for digitalization of traditional Chinese medicine (TCM) pulse diagnosis. The PFFS does not interfere with the fingertips' tactile sense while detecting fingertip force. This PFFS detects the change of blood volume in fingertip by photoelectric plethysmography and can obtain the change of output current under different fingertip forces. We also studied the effect of various factors on PFFS output signals, including emission lights of different wavelengths, ambient temperature, and the user's heartbeat artifact. We further established the relationship between the change of blood volume and fingertip force by combining experimental and theoretical methods. Moreover, we demonstrated the feasibility of the PFFS to detect fingertip forces under commonly used conditions in TCM pulse diagnosis without sensory interference. This PFFS also shows promise for perceiving the viscosity of objects and recognizing gestures in human-computer interaction. This work paves the way for the digitalization of fingertip forces during TCM pulse diagnosis and other fingertip forces under natural conditions.


Subject(s)
Fingers , Wearable Electronic Devices , Humans , Touch , Mechanical Phenomena , Blood Volume
6.
J Proteome Res ; 22(8): 2669-2682, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37475705

ABSTRACT

Ulcerative colitis (UC), belonging to inflammatory bowel disease (IBD), is a chronic and relapsing inflammatory disorder of the gastrointestinal tract, which has not been completely cured in patients so far. Valeriana jatamansi is a Chinese medicine used clinically to treat "diarrhea," which is closely related to UC. This study was to elucidate the therapeutic effects of V. jatamansi extract (VJE) on dextran sodium sulfate (DSS)-induced UC in mice and its underlying mechanism. In this work, VJE effectively ameliorates the symptoms and histopathological scores and reduces the production of inflammatory factors in UC mice. The colon untargeted metabolomics analysis and 16S rDNA sequencing showed remarkable differences in colon metabolite profiles and intestinal microbiome composition between the control and DSS groups, and VJE intervention can reduce these differences. Thirty-two biomarkers were found and modulated the primary pathways including pyrimidine metabolism, arginine biosynthesis, and glutathione metabolism. Meanwhile, twelve significant taxa of gut microbiota were found. Moreover, there is a close relationship between endogenous metabolites and intestinal flora. These findings suggested that VJE ameliorates UC by inhibiting inflammatory factors, recovering intestinal maladjustment, and regulating the interaction between intestinal microbiota and host metabolites. Therefore, the intervention of V. jatamansi is a potential therapeutic treatment for UC.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Microbiota , Valerian , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Metabolomics , Colon , Dextran Sulfate , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Mice, Inbred C57BL
7.
J Anim Sci Technol ; 65(2): 336-350, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37093912

ABSTRACT

Two experiments were conducted in this research. Experiment 1 investigated the spatial expression characteristics of calcium (Ca) and phosphorus (P) transporters in the duodenum, jejunum, and ileum of 21-day-old broilers provided with adequate nutrient feed. Experiment 2 evaluated the effects of dietary vitamin D3 (VD3) concentration (0, 125, 250, 500, 1,000, and 2,000 IU/kg) on growth performance, bone development, and gene expression levels of intestinal Ca and P transporters in 1-21-day-old broilers provided with the negative control diet without supplemental VD3. Results in experiment 1 showed that the mRNA levels of calcium-binding protein 28-kDa (CaBP-D28k), sodium-calcium exchanger 1 (NCX1), plasma membrane calcium ATPase 1b (PMCA1b), and IIb sodium-phosphate cotransporter (NaPi-IIb) were the highest in the broiler duodenum. By contrast, the mRNA levels of inorganic phosphate transporter 1 (PiT-1) and 2 (PiT-2) were the highest in the ileum. Results in experiment 2 showed that adding 125 IU/kg VD3 increased body weight gain (BWG), feed intake (FI), bone weight, and percentage and weight of Ca and P in the tibia and femur of 1-21-day-old broilers compared with the negative control diet (p < 0.05). The rise in dietary VD3 levels from 125 to 1,000 IU/kg further increased the BWG, FI, and weights of the bone, ash, Ca, and P (p < 0.05). No difference in growth rate and leg bone quality was noted in the broilers provided with 1,000 and 2,000 IU/kg VD3 (p > 0.05). Supplementation with 125-2,000 IU/kg VD3 increased the mRNA abundances of intestinal Ca and P transporters to varying degrees. The mRNA level of CaBP-D28k increased by 536, 1,161, and 28 folds in the duodenum, jejunum, and ileum, respectively, after adding 1,000 IU/kg VD3. The mRNA levels of other Ca and P transporters (PMCA1b, NCX1, NaPi-IIb, PiT-1, and PiT-2) increased by 0.57-1.74 folds by adding 1,000-2,000 IU/kg VD3. These data suggest that intestinal Ca and P transporters are mainly expressed in the duodenum of broilers. Moreover, the addition of VD3 stimulates the two mineral transporter transcription in broiler intestines.

8.
Medicine (Baltimore) ; 102(12): e33347, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36961168

ABSTRACT

Myofascial Pain Syndrome (MPS) is a prevalent disease, and the related literature research has been increasing in recent years. However, there is a lack of scientific and comprehensive bibliometric analyses in the MPS research field. This study aimed to summarize and visualize the literature distribution laws, research hotspots and development trends in MPS based on bibliometric methods. Relevant literature on MPS research from 1956 to 2022 was retrieved from the Web of Science Core Collection database. Quantitative and visual analyses of the collected literature were performed using Microsoft Office 2021, Bibliometrics, VOSviewer, and CiteSpace. A total of 1099 papers were included, and the number of papers in this research field is generally upward. The USA has the most publications (270), and Univ Sao Paulo is the institution with the most publications (31). Hong CZ and Calvo-Lobo C have the same number of publications and are the authors with the most publications (20), and Simons DG is the author with the most co-citations (1078). Journal of Musculoskeletal Pain is the journal with the most publications (61), and Pain is the journal with the most co-cited papers (2598) and the highest impact factor (7.926). Lidocaine injection versus dry needling to myofascial trigger point. The importance of the local twitch response is the reference with the highest number of co-citations (136). The top 5 keywords in this period are myofascial pain syndrome (571), trigger points (218), pain (97), myofascial pain (92), and myofascial trigger point (80). The keywords of recent bursts are dry needling (2016-2022), efficacy (2020-2022), validity (2020-2022), temporomandibular joint disorder (2020-2022), and orofacial pain (2020-2022). This study summarizes and visualizes the evolution, research hotspots, and future trends of the global MPS domain from 1956 to 2022. It is helpful for scholars to understand the general situation of MPS research quickly and provide a reference for clinical decision-making and future research directions.


Subject(s)
Fibromyalgia , Myofascial Pain Syndromes , Humans , Brazil , Myofascial Pain Syndromes/therapy , Bibliometrics , Facial Pain
9.
Crit Rev Food Sci Nutr ; : 1-31, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36073729

ABSTRACT

Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.

10.
Biomed Pharmacother ; 153: 113421, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076485

ABSTRACT

In folk medicine, Aloe, a genus of Aloaceae, is constantly developed into laxative drugs or products and skin remedies with tremendous popularity worldwide. However, almost all products of Aloe are in roughly processed form. Therefore, developing related products of the active ingredients derived from Aloe is of great medical value. Aloin is a quality standard compound based on the Chinese Pharmacopoeia (CHP). It has a wide range of pharmacological activities, including anti-tumor, anti-inflammatory, anti-osteoporotic, organ-protective, anti-viral, anti-microbial, anti-parasitic, and laxative potentials. Moreover, it regulates blood lipids and glucose and improves neuropathic pain effects, depicting potential to be transformed into promising medicines and healthcare products. In addition to the functional cosmetics and health products of Aloe, the availability, pharmacological activities, pharmacokinetics, formulation studies, and toxicity of aloin were summarized after investigating the literature from PubMed, Google, and other databases. Moreover, significant attention had been paid to the development of aloin-derived medicines and healthcare products. Thus, the present review clarified the possibility of aloin as medicines and healthcare products to develop and utilize Aloe resources.


Subject(s)
Aloe , Emodin , Anthraquinones/pharmacology , Anti-Inflammatory Agents , Antiviral Agents , Delivery of Health Care , Emodin/analogs & derivatives , Emodin/pharmacology , Laxatives
11.
Biomed Pharmacother ; 152: 113207, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35667236

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disorder in the elderly characterized by memory loss and cognitive dysfunction. The pathogenesis of AD is complex. One-targeted anti-AD drugs usually fail to delay AD progression. Traditional Chinese medicine records have documented the use of the roots of Panax ginseng (ginseng roots) and its prescriptions to treat dementia. Ginsenoside Rg1, the main ginsenoside component of ginseng roots, exhibits a certain therapeutic effect in the abovementioned diseases, suggesting its potential in the management of AD. Therefore, we combed the pathogenesis of AD and currently used anti-AD drugs, and reviewed the availability, pharmacokinetics, and pharmaceutic studies of ginsenoside Rg1. This review summarizes the therapeutic effects and mechanisms of ginsenoside Rg1 and its deglycosylated derivatives in AD in vivo and in vitro. The main mechanisms include improvement in Aß and Tau pathologies, regulation of synaptic function and intestinal microflora, and reduction of inflammation, oxidative stress, and apoptosis. The underlying mechanisms mainly involve the regulation of PKC, MAPK, PI3K/Akt, CDK5, GSK-3ß, BDNF/TrkB, PKA/CREB, FGF2/Akt, p21WAF1/CIP1, NF-κB, NLRP1, TLR3, and TLR4 signaling pathways. As the effects and underlying mechanisms of ginsenoside Rg1 on AD have not been systematically reviewed, we have provided a comprehensive review and shed light on the future directions in the utilization of ginsenoside Rg1 and ginseng roots as well as the development of anti-AD drugs.


Subject(s)
Alzheimer Disease , Ginsenosides , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Glycogen Synthase Kinase 3 beta , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism
12.
J Ginseng Res ; 45(6): 617-630, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34764717

ABSTRACT

Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural non-toxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun N-terminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.

13.
Nat Commun ; 12(1): 4142, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230469

ABSTRACT

Potato is the third most important staple food crop. To address challenges associated with global food security, a hybrid potato breeding system, aimed at converting potato from a tuber-propagated tetraploid crop into a seed-propagated diploid crop through crossing inbred lines, is under development. However, given that most diploid potatoes are self-incompatible, this represents a major obstacle which needs to be addressed in order to develop inbred lines. Here, we report on a self-compatible diploid potato, RH89-039-16 (RH), which can efficiently induce a mating transition from self-incompatibility to self-compatibility, when crossed to self-incompatible lines. We identify the S-locusinhibitor (Sli) gene in RH, capable of interacting with multiple allelic variants of the pistil-specific S-ribonucleases (S-RNases). Further, Sli gene functions like a general S-RNase inhibitor, to impart SC to RH and other self-incompatible potatoes. Discovery of Sli now offers a path forward for the diploid hybrid breeding program.


Subject(s)
Diploidy , F-Box Proteins/genetics , Genes, Plant , Plant Proteins/genetics , Self-Incompatibility in Flowering Plants/genetics , Solanum tuberosum/genetics , Flowers/genetics , Phylogeny , Plant Breeding , Plants, Genetically Modified , Ribonucleases/genetics , Seeds
14.
Front Pharmacol ; 12: 627458, 2021.
Article in English | MEDLINE | ID: mdl-33867985

ABSTRACT

For decades, chronic diseases including cardiovascular and cerebrovascular diseases (CCVDs) have plagued the world. Meanwhile, we have noticed a close association between CCVDs and vascular lesions, such as hypertension. More focus has been placed on TMPs and natural products with vasodilation and hypotension. TMPs with vasodilatory and hypotensive activities are mainly from Compositae, Lamiaceae, and Orchidaceae (such as V. amygdalina Del., T. procuinbens L., M. glomerata Spreng., K. galanga L., etc.) whereas natural products eliciting vasorelaxant potentials were primarily from flavonoids, phenolic acids and alkaloids (such as apigenin, puerarin, curcumin, sinomenine, etc.). Furthermore, the data analysis showed that the vasodilatory function of TMPs was mainly concerned with the activation of eNOS, while the natural products were primarily correlated with the blockage of calcium channel. Thus, TMPs will be used as alternative drugs and nutritional supplements, while natural products will be considered as potential therapies for CCVDs in the future. This study provides comprehensive and valuable references for the prevention and treatment of hypertension and CCVDs and sheds light on the further studies in this regard. However, since most studies are in vitro and preclinical, there is a need for more in-depth researches and clinical trials to understand the potential of these substances.

15.
Nat Prod Res ; 35(16): 2758-2762, 2021 Aug.
Article in English | MEDLINE | ID: mdl-31502480

ABSTRACT

The serotonin (5-hydroxytryptamine) type 3 receptor is an important target in the control of digestive dysfunction such as anorexia and bulimia, and 5-HT3 receptor antagonists are effective against eating disorder and the early-phase chemotherapy and radiotherapy evoked vomiting. Our previous research of Valeriana jatamansi revealed the presence of iridoids, which showed potent antitumor activities. Here, we explored the effects of 10π aromatic iridoid desacylbaldrinal isolated from V. jatamansi on the 5-HT3 receptor current. We performed whole cell recordings of 5-HT3A receptor currents in the presence of the compound. The result indicated that desacylbaldrinal inhibited the 5-HT-mediated 5-HT3A receptor current.


Subject(s)
Iridoids/pharmacology , Receptors, Serotonin, 5-HT3 , Serotonin 5-HT3 Receptor Antagonists/pharmacology , Serotonin , Valerian/chemistry , Humans , Iridoids/isolation & purification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Serotonin 5-HT3 Receptor Antagonists/isolation & purification
16.
Fitoterapia ; 138: 104293, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31398447

ABSTRACT

Herbal medicines (HMs) have attracted widespread attention because of their significant contributions to the prevention and treatment of many human diseases. Recently, gut microbiota has become an important frontier to understand the therapeutic mechanisms of medicines. Gut microbiota-mediated transformation is a microbial metabolic form after oral administrations of HMs compounds. A great number of studies showed that gut microbiota could transform some HMs compounds by the variation of chemical structures into several active metabolites, which exerted better bioavailabilities and therapeutic activities than their parent compounds. Among these HMs compounds, alkaloids, flavonoids, polyphenols and terpenoids were the representative ones. However, there is no systemic review focusing on the potential improved therapeutic activities of these natural compounds caused by gut microbial transformation. Here, this review summarizes the therapeutic activities that are more potent in microbial transformed metabolites than in their parent compounds (alkaloids, flavonoids, polyphenols and terpenoids) from HMs. We hope this review will be conducive to deepening the understanding of the relationship between gut microbial transformation and therapeutic activities of HMs compounds.


Subject(s)
Alkaloids/metabolism , Flavonoids/metabolism , Gastrointestinal Microbiome , Plant Preparations/metabolism , Polyphenols/metabolism , Terpenes/metabolism , Alkaloids/pharmacology , Biological Availability , Flavonoids/pharmacology , Humans , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plant Preparations/pharmacology , Plants, Medicinal/chemistry , Polyphenols/pharmacology , Terpenes/pharmacology
17.
BMC Complement Altern Med ; 19(1): 126, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31185967

ABSTRACT

BACKGROUND: Gut microbiota plays a crucial role in the treatment of gastrointestinal (GI) diseases such as chemotherapy-induced diarrhea (CID). Shenzhu Capsule (SZC) is a Chinese herbal formula, which is composed of Renshen (rhizomes of Panax ginseng C. A. Mey.) and Baizhu (rhizomes of Atractylodes macrocephala Koidz.). Many Chinese traditional anti-diarrheal formulae that contain Renshen and Baizhu are capable of effectively alleviating CID. However, the efficacy in vivo and potential mechanism of SZC (the form of compatibility of Renshen and Baizhu) in the treatment of CID had not been elucidated. Here, this study aimed to investigate whether SZC exhibited the anti-diarrheal activity, and whether gut microbiota was involved in the therapeutic effect of SZC on CID. METHODS: High performance liquid chromatography (HPLC), gas chromatography-mass spectrometer (GC-MS) and infrared spectroscopy (IR) analyses were used to characterize the extracted components in SZC. The mice were orally administrated with SZC in a preventive mode on the first 2 days of this experiment, and then intraperitoneally injected with 5-FU (40 mg/kg/d) for 6 days. SZC treatment lasted until the 3rd day after the end of 5-FU chemotherapy. We investigated the effects of SZC on body weights, diarrhea, thymus/spleen indexes, colonic tissues, and gut microbiota. Colonic histology was examined by hematoxylin-eosin (HE) staining. 16S rDNA Amplicon Sequencing was used to analyze the gut microbial structure from fecal samples. RESULTS: SZC significantly increased the body weights and thymus/spleen indexes, alleviated diarrhea, and reversed histopathological changes of colons. In addition, gut microbiota analysis revealed that the overall structure of gut microbiota in CID mice was disturbed, but reversed to the normal state after SZC treatment. At genus level, SZC significantly inhibited the growth of some potential pathogens associated with diarrhea, such as Clostridiumm, Bacteroides, Parabacteroides, Alloprevotella, Acinetobacter and Pseudomonas. CONCLUSIONS: In our study, these data illustrated that SZC inhibited the growth of many potential pathogens during the alleviation of CID. Gut microbial modulation was associated with the anti-diarrheal activity of SZC.


Subject(s)
Atractylodes/chemistry , Diarrhea/prevention & control , Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Panax/chemistry , Animals , Antimetabolites, Antineoplastic/adverse effects , Diarrhea/chemically induced , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Female , Fluorouracil/adverse effects , Male , Mice , Phytotherapy , Random Allocation , Spleen/drug effects , Thymus Gland/drug effects
18.
J Ethnopharmacol ; 238: 111887, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31004726

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) holds that deficiency of spleen-Qi is the major pathogenesis of chemotherapy-induced diarrhea (CID). Herb pair of Atractylodes macrocephala Koidz. (AM) and Panax ginseng C. A. Mey. (PG) has good effects of supplementing Qi and strengthening spleen. AIM OF THE STUDY: To investigate therapeutic effects and mechanism of Atractylodes macrocephala essential oil (AMO) and Panax ginseng total saponins (PGS) alone and in combination (AP) on 5-fluorouracil (5-FU) chemotherapy induced diarrhea in mice. MATERIALS AND METHODS: The mice were administered with AMO, PGS and AP respectively for 11 days, and intraperitoneally injected with 5-FU for 6 days since the 3rd day of the experiment. During the experiment, the body weights and diarrhea scores of mice were recorded daily. Thymus and spleen indexes were calculated after sacrifice of the mice. Pathological changes in ileum and colonic tissues were examined by hematoxylin-eosin (HE) staining. And the content levels of intestinal inflammatory cytokines were measured by enzyme-linked immmunosorbent assays (ELISA). 16S rDNA Amplicon Sequencing was used to analyze and interpret the gut microbiota of fecal samples. RESULTS: AP significantly inhibited body weights loss, diarrhea, reductions of thymus and spleen indexes, and pathological changes of ileums and colons induced by 5-FU. Neither AMO nor PGS alone significantly improved above-mentioned abnormalities. Besides, AP could significantly suppressed the 5-FU-mediated increases of the intestinal inflammatory cytokines (TNF-α, IFN-γ, IL-6, IL-1ß and IL-17), while AMO or PGS only inhibited some of them after 5-FU chemotherapy. Gut microbiota analysis indicated that 5-FU induced overall structural changes of gut microbiota were reversed after AP treatment. Additionally, AP significantly modulated the abundances of different phyla similar to normal values, and restored the ratios of Firmicutes/Bacteroidetes (F/B). At genus level, AP treatment dramatically decreased potential pathogens like Bacteroides, Ruminococcus, Anaerotruncus and Desulfovibrio. AP also antagonized the abnormal effects of AMO and PGS alone on certain genera like Blautia, Parabacteroides and Lactobacillus. Neither AMO nor PGS alone inhibited changes of gut microbial structure caused by 5-FU. CONCLUSIONS: AP, combination of AMO and PGS, not AMO or PGS alone, significantly ameliorated diarrhea, inhibited intestinal pathology, and modulated gut microbial structure in 5-FU induced mice. AP also antagonized abnormal effects of AMO or PGS on certain genera. The results illustrated that gut microbiota was involved in the combined effects of AP on 5-FU induced diarrhea.


Subject(s)
Atractylodes/chemistry , Diarrhea/chemically induced , Oils, Volatile/therapeutic use , Panax/chemistry , Plant Oils/therapeutic use , Saponins/therapeutic use , Animals , Diarrhea/drug therapy , Fluorouracil/toxicity , Ginsenosides/chemistry , Ginsenosides/therapeutic use , Mice , Oils, Volatile/chemistry , Plant Oils/chemistry , Specific Pathogen-Free Organisms
19.
Biomed Pharmacother ; 102: 212-220, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29558718

ABSTRACT

The treatment goal in spinal cord injury (SCI) is to repair neurites and suppress cell apoptosis. Panax quinquefolius saponin (PQS) is the major active ingredient of American ginseng and has been demonstrated to have anti-inflammatory and anti-apoptotic roles in various diseases. However, the potential effect of PQS on the pathological process of acute SCI remains unknown. This work tested the effects of PQS on acute SCI and clarified its potential mechanisms. PQS treatment ameliorated the damage to spinal tissue and improved the functional recovery after SCI. PQS treatment inhibited endoplasmic reticulum (ER) stress and the associated apoptosis after acute SCI. PQS further abolished the triglyceride (TG)-induced ER stress and associated apoptosis in neuronal cultures. PQS appears to inhibit the ER-stress-induced neurite injury in PC12 cells. Our results suggest that PQS is a novel therapeutic agent for acute central nervous system injury.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Neurites/drug effects , Recovery of Function/drug effects , Saponins/therapeutic use , Spinal Cord Injuries/drug therapy , Acute Disease , Animals , Female , Neurites/metabolism , Neurites/pathology , Panax/chemistry , Rats, Sprague-Dawley , Saponins/isolation & purification , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
20.
Zhongguo Zhong Yao Za Zhi ; 42(10): 1996-2000, 2017 May.
Article in Chinese | MEDLINE | ID: mdl-29090563

ABSTRACT

Panax ginseng is a well-known medicinal plant all over the world. It has high nutritional value and medicinal value. China and South Korea are the major countries in the world for ginseng cultivation, production and exportation. China's ginseng production accounts for more than half of the world, but the output value is less than that of Korea. The standardization process of ginseng industry plays an important role. This paper makes a detailed analysis of the Chinese and Korean ginseng national standards and the standardization process, and makes a detailed comparative analysis of the categories, standard contents, index selection, age, implementation and promotion status of the Chinese and Korean ginseng standards. The development disadvantages of ginseng industry standardization were displayed. And we give our advises on the standard revision, implementation of China's ginseng industry standardization, hoping to enhance the competitiveness of China's ginseng industry.


Subject(s)
Drugs, Chinese Herbal/standards , Panax/chemistry , China , Quality Control , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL