Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Chem Sci ; 14(38): 10570-10579, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37799995

ABSTRACT

Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.

2.
Viruses ; 14(3)2022 02 28.
Article in English | MEDLINE | ID: mdl-35336907

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become more serious because of the continuous emergence of variants of concern (VOC), thus calling for the development of broad-spectrum vaccines with greater efficacy. Adjuvants play important roles in enhancing the immunogenicity of protein-based subunit vaccines. In this study, we compared the effect of three adjuvants, including aluminum, nanoparticle manganese and MF59, on the immunogenicity of three protein-based COVID-19 vaccine candidates, including RBD-Fc, RBD and S-trimer. We found that the nanoparticle manganese adjuvant elicited the highest titers of SARS-CoV-2 RBD-specific IgG, IgG1 and IgG2a, as well as neutralizing antibodies against infection by pseudotyped SARS-CoV-2 and its Delta variant. What is more, the nanoparticle manganese adjuvant effectively reduced the viral load of the authentic SARS-CoV-2 and Delta variant in the cell culture supernatants. These results suggest that nanoparticle manganese, known to facilitate cGAS-STING activation, is an optimal adjuvant for protein-based COVID-19 subunit vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Vaccines, Subunit
3.
Int J Biol Sci ; 17(6): 1555-1564, 2021.
Article in English | MEDLINE | ID: mdl-33907519

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Caco-2 Cells , Chlorocebus aethiops , Computer Simulation , Drug Discovery , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Molecular Structure , Protease Inhibitors/chemistry , Vero Cells
4.
Pharmacol Res ; 159: 104960, 2020 09.
Article in English | MEDLINE | ID: mdl-32473310

ABSTRACT

Coronavirus Disease 2019 (COVID-19) caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with a crude case fatality rate of about 0.5-10 % depending on locality. A few clinically approved drugs, such as remdesivir, chloroquine, hydroxychloroquine, nafamostat, camostat, and ivermectin, exhibited anti-SARS-CoV-2 activity in vitro and/or in a small number of patients. However, their clinical use may be limited by anti-SARS-CoV-2 50 % maximal effective concentrations (EC50) that exceeded their achievable peak serum concentrations (Cmax), side effects, and/or availability. To find more immediately available COVID-19 antivirals, we established a two-tier drug screening system that combines SARS-CoV-2 enzyme-linked immunosorbent assay and cell viability assay, and applied it to screen a library consisting 1528 FDA-approved drugs. Cetilistat (anti-pancreatic lipase), diiodohydroxyquinoline (anti-parasitic), abiraterone acetate (synthetic androstane steroid), and bexarotene (antineoplastic retinoid) exhibited potent in vitro anti-SARS-CoV-2 activity (EC50 1.13-2.01 µM). Bexarotene demonstrated the highest Cmax:EC50 ratio (1.69) which was higher than those of chloroquine, hydroxychloroquine, and ivermectin. These results demonstrated the efficacy of the two-tier screening system and identified potential COVID-19 treatments which can achieve effective levels if given by inhalation or systemically depending on their pharmacokinetics.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Evaluation, Preclinical/methods , Pneumonia, Viral/drug therapy , Androstenes/pharmacology , Animals , Benzoxazines/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/physiology , Bexarotene/pharmacology , COVID-19 , Caco-2 Cells , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus Infections/virology , Cytopathogenic Effect, Viral/drug effects , Databases, Pharmaceutical , Drug Approval , Drug Repositioning , Enzyme-Linked Immunosorbent Assay , Humans , Iodoquinol/pharmacology , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , United States , United States Food and Drug Administration , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL