Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 133: 190-201, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30981777

ABSTRACT

Polysaccharides extracted from seeds and husk of psyllium were characterized for different physicochemical characteristics, and bioactivities. Extracted polysaccharides are comprised of d-xylose, l-arabinose, d-glucose, d-galactose, and l-rhamnose. Crude husk-polysaccharide was crystalline, whereas rest was amorphous in nature. Husk-polysaccharide was structurally stable, and purified fractions were thermostable. Crude polysaccharides were irregular in shape with non-porous smooth-surface, however purified husk-polysaccharides showed some porosity, and fibrous nature. Husk-polysaccharide showed higher viscosity compared to seed-polysaccharide, but viscosity decreased with the purification. Crude polysaccharides contained hydrogel-like behavior compared to corresponding purified fractions. The purified fractions of seed-polysaccharide showed the utmost antioxidant and scavenging activities with a half-maximal effective concentration of 347.40 ±â€¯1.79 and 362.72 ±â€¯2.75 µg, respectively. Crude seed-polysaccharide showed about 34% anti-proliferation on Huh-7, whereas its purified fractions showed 42% anti-proliferation on HeLa cell line. The study confirms that psyllium polysaccharides are potential natural antioxidant and anti-carcinogenic agent; however a detailed study is needed to explore psyllium for nutraceutical applications.


Subject(s)
Chemical Phenomena , Polysaccharides/chemistry , Polysaccharides/pharmacology , Psyllium/chemistry , Seeds/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Cell Proliferation/drug effects , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , HeLa Cells , Humans , Molecular Weight , Monosaccharides/analysis , Optical Phenomena , Particle Size , Picrates/chemistry , Sulfonic Acids/chemistry , Temperature
2.
Compr Rev Food Sci Food Saf ; 18(3): 817-831, 2019 May.
Article in English | MEDLINE | ID: mdl-33336929

ABSTRACT

In recent years, marine organisms including seaweeds have been highlighted as potential sources of useful metabolites and bioactive compounds, with vast biological and physiological activities. Seaweeds have long been used as a food source, for medicinal purposes, and as dietary supplements in various Asian countries, and their potential benefits have recently attracted the attention of many Western and European countries. Their commercial value depends on their applications in the food, nutraceutical, and pharmaceutical industries. Seaweeds are considered a potential source of nutraceuticals or functional foods, and analysis of taste-oriented motives has revealed that seaweeds are preferentially selected over other types of marine foods by seafood consumers and people with high levels of health, education, and living status. It is a general perception that health conscious people prefer environmentally friendly food sources, and present an opportunity to focus on seaweed-based foods, which have significant nutritional benefits to humans. Among the various bioactive constituents, seaweed polysaccharides have been proven to possess various beneficial properties including anticoagulant, anti-inflammatory, antioxidant, anticarcinogenic, and antiviral activities. The diversity and composition of seaweed polysaccharides play vital roles in these biological activities. Seaweeds are a rich source of sulfated polysaccharides, which are responsible for much of the bioactivity, as they can interact with various textures and cellular proteins. A number of toxicological assays and clinical trials suggest that the ingestion of seaweeds as functional foods should be considered worldwide to improve immune responses. In this review, different polysaccharides from seaweeds and their compositions and potential nutraceutical applications are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL