Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Immunol ; 12: 634509, 2021.
Article in English | MEDLINE | ID: mdl-33953711

ABSTRACT

Tregitopes (T regulatory epitopes) are IgG-derived peptides with high affinity to major histocompatibility complex class II (MHCII), that are known to promote tolerance by activating T regulatory cell (Treg) activity. Here we characterized the effect of IgG Tregitopes in a well-established murine model of allergic asthma, demonstrating in vivo antigen-specific tolerance via adoptive transfer of Tregitope-and-allergen-activated Tregs. Asthma is a heterogeneous chronic inflammatory condition affecting the airways and impacting over 300 million individuals worldwide. Treatment is suppressive, and no current therapy addresses immune regulation in severely affected asthmatics. Although high dose intra-venous immunoglobulin (IVIg) is not commonly used in the asthma clinic setting, it has been shown to improve severe asthma in children and in adults. In our laboratory, we previously demonstrated that IVIg abrogates airway hyperresponsiveness (AHR) in a murine model of asthma and induces suppressive antigen-specific T-regulatory cells. We hypothesized that IgG-derived Tregitopes would modulate allergic airway disease by inducing highly suppressive antigen-specific Tregs capable of diminishing T effector cell responses and establishing antigen-specific tolerance. Using ovalbumin (OVA-) and ragweed-driven murine models of allergic airway disease, we characterized the immunoregulatory properties of Tregitopes and performed Treg adoptive transfer to OVA- and ragweed-allergic mice to test for allergen specificity. Treatment with Tregitopes attenuated allergen-induced airway hyperresponsiveness and lung inflammation. We demonstrated that Tregitopes induce highly suppressive allergen-specific Tregs. The tolerogenic action of IgG Tregitopes in our model is very similar to that of IVIg, so we foresee that IgG Tregitopes could potentially replace steroid-based treatment and can offer a synthetic alternative to IVIg in a range of inflammatory and allergic conditions.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Epitopes, T-Lymphocyte/drug effects , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Lung/drug effects , Lymphocyte Activation/drug effects , T-Lymphocytes, Regulatory/drug effects , Adoptive Transfer , Animals , Animals, Genetically Modified , Antigens, Plant , Asthma/immunology , Asthma/metabolism , Asthma/physiopathology , Bronchoconstriction/drug effects , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Humans , Inflammation Mediators/metabolism , Lung/immunology , Lung/metabolism , Lung/physiopathology , Mice, Inbred C57BL , Ovalbumin , Plant Extracts , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation
2.
Nutrition ; 47: 97-103, 2018 03.
Article in English | MEDLINE | ID: mdl-29429543

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the effects of parenteral glutamine (GLN) supplementation combined with enteral nutrition (EN) on heat shock protein (Hsp) 90 expression and Peyer's patch (PP) apoptosis in severely burned rats. METHODS: Male Sprague-Dawley (SD) rats were randomly assigned to four groups: Sham burn + EN + GLN-free amino acid (AA; n = 10), sham burn + EN + GLN (n = 10), burn + EN + AA (n = 10), and burn + EN + GLN (n = 10). Two hours after a 30% total body surface area (TBSA), full-thickness scald burn injury on the back, burned rats in two of the experimental groups (burn + EN + AA and burn + EN + GLN groups) were fed with a conventional EN solution by oral gavage for 7 d. Simultaneously, rats in the burn + EN + GLN group were given 0.35 g GLN/kg body weight/d once via a tail vein injection for 7 d and rats in the burn + EN + AA group were administered isocaloric/isonitrogenous GLN-free amino acid solution (Tyrosine) for comparison. Rats in two sham burn control groups (sham burn + EN + AA and sham burn + EN + GLN groups) were treated in the same manner except for the burn injury. All rats in the four groups were given 175 kcal/kg body wt/d. There was isonitrogenous, isovolumic, and isocaloric intake among the four groups. At the end of the seventh day after completion of the nutritional program, all rats were anesthetized and samples were collected for further analysis. PP apoptosis was measured by terminal deoxyuridine nick-end labeling (TUNEL). The expression of Hsp90 in PPs was analyzed by western blotting. Caspase-3 activity of PPs was also assessed. Levels of proinflammatory cytokines of gut tissues were evaluated by enzyme-linked immunosorbent assay (ELISA). The intestinal immunoglobulin A (IgA) content was also determined by ELISA. RESULTS: The results revealed that intestinal IgA content in rats of the burn + EN + GLN group were significantly increased compared with those in the burn + EN + AA group (P < 0.05). The expression of Hsp90 of PPs in rats in the burn + EN + GLN group was significantly upregulated compared with those in the burn + EN + AA group (P < 0.05). On the other hand, levels of proinflammatory cytokines of gut tissues, caspase-3 activity, and the number of TUNEL-stained cells of PPs in rats of the burn + EN + GLN group were markedly decreased compared with those of the burn + EN + AA group (P < 0.05). CONCLUSIONS: The results of this study show that parenteral glutamine supplementation combined with EN may upregulate the expression of Hsp90, reduce caspase-3 activity, lessen the release of proinflammatory cytokines, attenuate PP apoptosis, and improve intestinal IgA response in burned rats. Clinically, therapeutic efforts to improve intestinal immunity may contribute to a favorable outcome in severely burned patients.


Subject(s)
Burns/therapy , Dietary Supplements , Glutamine/pharmacology , HSP90 Heat-Shock Proteins/drug effects , Peyer's Patches/drug effects , Animals , Apoptosis/drug effects , Cytokines/metabolism , Disease Models, Animal , Enteral Nutrition , Intestinal Mucosa/metabolism , Male , Parenteral Nutrition , Rats , Rats, Sprague-Dawley
3.
Bosn J Basic Med Sci ; 11(4): 209-13, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22117825

ABSTRACT

The objective of our study was to examine the hepatic protective mechanism of Ginkgo biloba extract (GBE) in rats with obstructive jaundice (OJ). Twenty rats underwent bile duct ligation and received daily intraperitoneal injections of either control saline or Ginkgo biloba extract for 14 days. Ten sham-operated rats had their bile duct exposed but not ligated or sectioned. Serum alanine transaminase (ALT) was analyzed for liver function tests and liver damage was further assessed by histologic examination. The levels of endothelin 1 (ET-1) and nitric oxide (NO) in blood and liver homogenate were measured. The serum alanine transaminase was elevated in the bile duct ligation rats (BDL rats); GBE could significantly lower serum transaminase level and ameliorate liver histological damage. ET-1 and NO levels in both plasma and liver tissue were also elevated in common bile duct (CBD)-ligated rats, but this increase was significantly decreased by GBE treatment. Moreover, the degree of liver damage severity positively correlates with high levels of ET-1 and NO. GBE mediated the liver protective effect at least in part by suppressing overproduction of ET-1 and NO and restoring a proper balance between ET-1 and NO to some extent.


Subject(s)
Ginkgo biloba , Jaundice, Obstructive/complications , Liver/drug effects , Plant Extracts/pharmacology , Alanine Transaminase/metabolism , Animals , Disease Models, Animal , Endothelin-1/metabolism , Female , Jaundice, Obstructive/metabolism , Jaundice, Obstructive/pathology , Liver/metabolism , Liver/pathology , Male , Nitric Oxide/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL