Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Toxicol Res (Camb) ; 9(1): 55-66, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32742635

ABSTRACT

Fine particulate matter, a major air pollutant across the world, causes a series of pulmonary diseases. Vitamin D is a typical vitamin with emerging roles in inflammation and fibrosis. Different situations and diseases need different doses and modes of vitamin D administration, which challenges the existing vitamin D supplementary rules. Thus, studies of vitamin D applications and their mechanisms in various diseases are important for its future therapeutic applications. In this study, the therapeutic application of vitamin D3 in chronic particle-exposure-associated lung fibrosis and tissue remodeling was investigated. In vivo studies showed that vitamin D3 significantly attenuated fibrosis effects by decreasing α-smooth muscle actin-regulated extracellular matrix deposition and restoring expressions of E-cadherin and N-cadherin. With the importance of activated macrophage in the regulation of local epithelium and fibroblast in the process of tissue fibrosis, two separate in vitro systems of co-culture of macrophages with lung epithelium or fibroblast were built. The results confirmed that vitamin D3 promoted the proliferation of lung epithelium and depressed the fibrosis effects of fibroblasts as well. In addition, our results indicated that the therapeutic effects of vitamin D3 were through Nrf2 signals. Our work provides convincing experimental evidence for vitamin D therapeutic application to promote tissue repair and improve particle-associated lung fibrosis.

2.
J Agric Food Chem ; 68(31): 8321-8329, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32706966

ABSTRACT

Bixin is a natural carotenoid isolated from the seeds of Bixa orellana, with numerous important pharmacological activities, including antioxidant and antifibrotic effects. The nuclear factor erythroid-2-related factor2 (Nrf2) signaling pathway induced by bixin is involved in the process. Excessive reactive oxygen species generation in tubular cells contributes to kidney interstitial fibrosis. The potential therapeutic strategy for bixin in alleviating kidney fibrosis remains largely unclear. In this study, we used unilateral ureteral obstruction (UUO) to establish a renal fibrotic model. Dramatic oxidative DNA damage occurs in kidneys, especially in tubular cells after UUO. In cultured tubular cells, bixin could induce Nrf2 signaling activation by suppressing Nrf2 ubiquitination and increasing its protein stability. Transforming growth factor beta 1-induced epithelial-to-mesenchymal transition (EMT) and extracellular matrix production were suppressed by bixin, and blockade of Nrf2 activation by small interfering RNA could largely reverse the protective effect of bixin. In vivo studies showed that administration of bixin induces Nrf2 signaling activation in tubular cells and markedly attenuates partial EMT of tubular cells and kidney interstitial fibrosis after subjecting to UUO. Together, this study implies that bixin may protect against kidney interstitial fibrosis through stimulating Nrf2 activation in renal tubular cells.


Subject(s)
Carotenoids/administration & dosage , Fibrosis/prevention & control , Kidney Diseases/prevention & control , NF-E2-Related Factor 2/metabolism , Plant Extracts/administration & dosage , Ureteral Obstruction/complications , Animals , Bixaceae/chemistry , Fibrosis/etiology , Fibrosis/genetics , Fibrosis/metabolism , Humans , Kidney/metabolism , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics
3.
J Diabetes Res ; 2019: 8289741, 2019.
Article in English | MEDLINE | ID: mdl-31583252

ABSTRACT

OBJECTIVE: To investigate the effect of single nucleotide polymorphisms (SNPs) of the key genes in vitamin D metabolic pathway on the serum 25(OH)D level after long-term vitamin D3 supplementation and provide a theoretical basis for rational vitamin D3 supplementation in diabetic patients with different genetic backgrounds. METHODS: Patients with type 2 diabetes (T2DM) who met the inclusive criteria were given 800 IU of vitamin D3 daily for 30 consecutive months. Serum 25(OH)D levels was measured at enrollment and every 6 months after enrollment. The average value of four-time measurements represented individual serum 25(OH)D level during vitamin D3 supplementation. Multiplex TaqMan genotyping was used to determine the distribution of eight candidate SNPs in genes of DHCR7, CYP2R1, CYP27B1, CYP24A1, and VDR, which are key genes in the vitamin D metabolic pathway, in diabetic patients. RESULTS: At baseline, the average serum 25(OH)D level was 22.71 ± 6.87 ng/mL, and 17.9% of patients had a ≥30 ng/mL level. During supplementation, the level of 25(OH)D increased significantly at each time point, and the average 25(OH)D level increased to 30.61 ± 5.04 ng/mL; however, there were 44.6% of patients whose serum 25(OH)D levels were still below 30 ng/mL. In the patients with CYP27B1 (rs10877012) G/T genotype, 71.79% achieved sufficient level of 25(OH)D, which was significantly higher than the other two genotypes (P < 0.05). Compared with those with T/T genotype, the RR of the patients with rs10877012 for <30 ng/mL level was 0.544 (95% CI: 0.291-0.917), and the RR after adjusting age and outdoor activity was 0.560 (95% CI: 0.292-0.970). CONCLUSION: The serum 25(OH)D level in patients with diabetes mellitus after long-term vitamin D3 supplementation is associated with CYP27B1 polymorphism. Patients with rs10877012 G/T allele have a better response to vitamin D3 supplementation. TRIAL REGISTRATION: This trial is registered with ChiCTR-IPC-17012657.


Subject(s)
Cholecalciferol/therapeutic use , Diabetes Mellitus, Type 2/genetics , Dietary Supplements , Genetic Predisposition to Disease , Vitamin D Deficiency/genetics , Vitamin D/analogs & derivatives , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Aged , Cholecalciferol/administration & dosage , Cholestanetriol 26-Monooxygenase/genetics , Cytochrome P450 Family 2/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Female , Genotype , Humans , Male , Middle Aged , Oxidoreductases Acting on CH-CH Group Donors/genetics , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/drug therapy , Vitamin D3 24-Hydroxylase/genetics
4.
Autoimmun Rev ; 18(8): 767-777, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31181327

ABSTRACT

P2X7 receptor (P2X7R), a distinct ligand-gated ion channel, is a member of purinergic type 2 receptor family with ubiquitous expression in human body. Previous studies have revealed a pivotal role of P2X7R in innate and adaptive immunity. Once activated, it will meditate some vital cascaded responses including the assembly of nucleotide-binding domain (NOD) like receptor protein 3 (NLRP3) inflammasome, non-classical secretion of IL-1ß, modulation of cytokine-independent pathways in inflammation such as P2X7R- transglutaminase-2 (TG2) and P2X7R-cathepsin pathway, activation and regulation of T cells, etc. In fact, above responses have been identified to be involved in the development of autoimmunity, specifically, the NLRP3 inflammasome could promote inflammation in massive autoimmune diseases and TG2, as well as cathepsin may contribute to joint destruction and degeneration in inflammatory arthritis. Recently, numerous evidences further suggested the significance of P2X7R in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), etc. In this review, we will succinctly discuss the biological characteristics and summarize the recent progress of the involvement of P2X7R in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.


Subject(s)
Autoimmune Diseases/immunology , Receptors, Purinergic P2X7/immunology , Animals , Autoimmune Diseases/therapy , Humans
5.
Redox Biol ; 1: 532-41, 2013.
Article in English | MEDLINE | ID: mdl-24273736

ABSTRACT

Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT-treated reconstructs that displayed increased immunohistochemical staining for Nrf2 and γ-GCS together with the elevation of total glutathione levels. Taken together, our data suggest the feasibility of achieving tanshinone-based cutaneous Nrf2-activation and photoprotection.


Subject(s)
Abietanes/pharmacology , Keratinocytes/drug effects , Keratinocytes/radiation effects , Sunscreening Agents/pharmacology , Cell Line , Gene Expression Regulation/drug effects , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Ubiquitination/drug effects , Ultraviolet Rays
6.
Autophagy ; 9(12): 2087-102, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24113242

ABSTRACT

Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.


Subject(s)
Amodiaquine/pharmacology , Antimalarials/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Autophagy/drug effects , Cell Proliferation/drug effects , Lysosomes/drug effects , Melanoma/drug therapy , Cell Death/drug effects , Cell Line, Tumor , Drug Evaluation, Preclinical , Drug Synergism , Energy Metabolism/drug effects , Humans , Lysosomes/metabolism , Melanoma/metabolism , Melanoma/pathology
7.
Environ Technol ; 34(1-4): 81-90, 2013.
Article in English | MEDLINE | ID: mdl-23530318

ABSTRACT

A series of Mn/Al2O3, La-Mn/Al2O3 and Fe-La-Mn/Al2O3 catalysts were prepared by an impregnation method and investigated for selective catalytic reduction of NO with NH3 at low temperature. The experimental results revealed that NO conversion over La-Mn/Al2O3 was obviously improved after La doping. Addition of Fe increased both NO conversion and the resistance to H2O and SO2. The catalyst Fe0.04La0.03Mn0.06/Al2O3 with a load mass of MnO2 = 6%, La2O3 = 3% and Fe2O3 = 4% exhibited relatively high catalytic activity and yielded 98% NO conversion at 260 degrees with a space velocity of 15,000 h(-1). Meanwhile, the catalytic activity was slightly decreased in the presence of H2O and SO2. Moreover, the catalysts were characterized by N2 adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy. The results showed that the doping of La enhanced the dispersion and oxidation states of Mn on the surface of Al2O3. On the surface of the Fe0.04La0.03Mn0.06/Al2O3 catalyst, La was highly dispersed and a mixed oxidation state of Mn existed, while iron ions were only in the Fe3+ state. The mechanism of selective catalytic reduction over these catalysts is also discussed. In this experiment, metal oxides loaded on the support were catalytic centres which served as electron transfer during NO reduction. The electron transfer between Mn3+ and Fe3+ might also exist and the mixture oxidation states of Mn on the surface of the Fe0.04La0.03Mn0.06/Al2O3 catalyst contributed to the SCR activity.


Subject(s)
Aluminum Oxide/chemistry , Ammonia/chemistry , Lanthanum/chemistry , Nitric Oxide/chemistry , Catalysis , Iron/chemistry , Manganese/chemistry , Photoelectron Spectroscopy , Sulfur Dioxide/chemistry , Temperature , Water/chemistry , X-Ray Diffraction
8.
Antioxid Redox Signal ; 19(14): 1647-61, 2013 Nov 10.
Article in English | MEDLINE | ID: mdl-23394605

ABSTRACT

AIMS: The NF-E2 p45-related factor 2 (Nrf2) signaling pathway regulates the cellular antioxidant response and activation of Nrf2 has recently been shown to limit tissue damage from exposure to environmental toxicants, including As(III). In an attempt to identify improved molecular agents for systemic protection against environmental insults, we have focused on the identification of novel medicinal plant-derived Nrf2 activators. RESULTS: Tanshinones [tanshinone I (T-I), tanshinone IIA, dihydrotanshinone, cryptotanshinone], phenanthrenequinone-based redox therapeutics derived from the medicinal herb Salvia miltiorrhiza, have been tested as experimental therapeutics for Nrf2-dependent cytoprotection. Using a dual luciferase reporter assay overexpressing wild-type or mutant Kelch-like ECH-associated protein-1 (Keap1), we demonstrate that T-I is a potent Keap1-C151-dependent Nrf2 activator that stabilizes Nrf2 by hindering its ubiquitination. In human bronchial epithelial cells exposed to As(III), T-I displays pronounced cytoprotective activity with upregulation of Nrf2-orchestrated gene expression. In Nrf2 wild-type mice, systemic administration of T-I attenuates As(III) induced inflammatory lung damage, a protective effect not observed in Nrf2 knockout mice. INNOVATION: Tanshinones have been identified as a novel class of Nrf2-inducers for antioxidant tissue protection in an in vivo As(III) inhalation model, that is relevant to low doses of environmental exposure. CONCLUSION: T-I represents a prototype Nrf2-activator that displays cytoprotective activity upon systemic administration targeting lung damage originating from environmental insults. T-I based Nrf2-directed systemic intervention may provide therapeutic benefit in protecting other organs against environmental insults.


Subject(s)
Abietanes/therapeutic use , Antioxidants/therapeutic use , Arsenic/toxicity , NF-E2-Related Factor 2/metabolism , Pneumonia/chemically induced , Pneumonia/drug therapy , Animals , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , Phenanthrenes/therapeutic use , Salvia miltiorrhiza/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL