Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Obesity (Silver Spring) ; 30(7): 1462-1471, 2022 07.
Article in English | MEDLINE | ID: mdl-35785481

ABSTRACT

OBJECTIVE: This study tested the hypothesis, in a prospective cohort study design, that maternal saturated free fatty acid (sFFA) concentration during pregnancy is prospectively associated with offspring (newborn) hypothalamic (HTH) microstructure and to explore the functional relevance of this association with respect to early-childhood body fat percentage (BF%). METHODS: In N = 94 healthy newborns (born mean 39.3 [SD 1.5] weeks gestation), diffusion-weighted magnetic resonance imaging was performed shortly after birth (25.3 [12.5] postnatal days), and a subgroup (n = 37) underwent a dual-energy x-ray absorptiometry scan in early childhood (4.7 [SD 0.7] years). Maternal sFFA concentration during pregnancy was quantified in fasting blood samples via liquid chromatography-mass spectrometry. Infant HTH microstructural integrity was characterized using mean diffusivity (MD). Multiple linear regression was used to test the association between maternal sFFA and HTH MD, accounting for newborn sex, age at scan, mean white matter MD, and image quality. Multiple linear regression models also tested the association between HTH MD and early-childhood BF%, accounting for breastfeeding status. RESULTS: Maternal sFFA during pregnancy accounted for 8.3% of the variation in newborn HTH MD (ß-std = 0.25; p = 0.006). Furthermore, newborn HTH MD prospectively accounted for 15% of the variation in early-childhood BF% (ß-std = 0.32; p = 0.019). CONCLUSIONS: These findings suggest that maternal overnutrition during pregnancy may influence the development of the fetal hypothalamus, which, in turn, may have clinical relevance for childhood obesity risk.


Subject(s)
Pediatric Obesity , Sexually Transmitted Diseases , Child , Child, Preschool , Fatty Acids, Nonesterified , Female , Humans , Hypothalamus/diagnostic imaging , Infant , Infant, Newborn , Pregnancy , Prospective Studies
2.
Hum Brain Mapp ; 43(1): 341-351, 2022 01.
Article in English | MEDLINE | ID: mdl-32198905

ABSTRACT

Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = -0.164 to -0.180). Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = -0.173 to -0.184). Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.


Subject(s)
Amygdala/pathology , Corpus Striatum/pathology , Depressive Disorder, Major/pathology , Hippocampus/pathology , Neuroimaging , Thalamus/pathology , Amygdala/diagnostic imaging , Corpus Striatum/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Multicenter Studies as Topic , Thalamus/diagnostic imaging
3.
Mov Disord ; 36(11): 2583-2594, 2021 11.
Article in English | MEDLINE | ID: mdl-34288137

ABSTRACT

BACKGROUND: Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE: Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS: Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS: Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax  = -0.20, dmin  = -0.09). The bilateral putamen (dleft  = -0.14, dright  = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS: Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging , Neuroimaging , Parkinson Disease/complications , Thalamus/pathology
4.
Transl Psychiatry ; 10(1): 91, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170058

ABSTRACT

The stress-related gene FKBP5 has been related to dysregulated glucocorticoid receptor (GR) signaling, showing increased GR sensitivity in trauma-exposed subjects with post-traumatic stress disorder (PTSD) but not in those without PTSD. However, the neural mechanism underlying the effects of FKBP5 remains poorly understood. Two hundred and thirty-seven Han Chinese adults who had lost their only child were included. Four FKBP5 single nucleotide polymorphisms (rs3800373, rs9296158, rs1360780, and rs9470080) were genotyped. All 179 participants were successfully divided into three FKBP5 diplotype subgroups according to two major FKBP5 H1 and H2 yin yang haplotypes. Brain average spectral power was compared using a two-way (PTSD diagnosis and FKBP5 diplotypes) analysis of covariance within four separate frequency bands (slow-5, slow-4, slow-3, and slow-2). Adults with PTSD showed lower spectral power in bilateral parietal lobules in slow-4 and in left inferior frontal gyrus (IFG) in slow-5. There was significant FKBP5 diplotype main effect in anterior cingulate cortex (ACC) in slow-4 (H1/H1 higher than other two subgroups), and in precentral/postcentral gyri and middle cingulate cortex (MCC) in slow-3 (H2/H2 higher than other two subgroups). Also, there was a significant diagnosis × FKBP5 diplotype interaction effect in right parietal lobule in slow-3. These findings suggest that adults with PTSD have lower low-frequency power in executive control network regions. Lower power in ACC and greater power in the motor/sensory areas in FKBP5 high-risk diplotype group suggest a disturbance of emotional processing and hypervigilance/sensitization to threatening stimuli. The interaction effect of diagnosis × FKBP5 in parietal lobule may contribute to PTSD development.


Subject(s)
Stress Disorders, Post-Traumatic , Adult , Brain/metabolism , Child , China , Haplotypes , Humans , Only Child , Polymorphism, Single Nucleotide , Stress Disorders, Post-Traumatic/genetics , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
5.
J Head Trauma Rehabil ; 33(2): 113-122, 2018.
Article in English | MEDLINE | ID: mdl-29517591

ABSTRACT

OBJECTIVE: To assess interactions of subcortical structure with subjective symptom reporting associated with mild traumatic brain injury (mTBI), using advanced shape analysis derived from volumetric MRI. PARTICIPANTS: Seventy-six cognitively symptomatic individuals with mTBI and 59 service members sustaining only orthopedic injury. DESIGN: Descriptive cross-sectional study. MAIN MEASURES: Self-report symptom measures included the PTSD Checklist-Military, Neurobehavioral Symptom Inventory, and Symptom Checklist-90-Revised. High-dimensional measures of shape characteristics were generated from volumetric MRI for 7 subcortical structures in addition to standard volume measures. RESULTS: Several significant interactions between group status and symptom measures were observed across the various shape measures. These interactions were revealed in the right thalamus and globus pallidus for each of the shape measures, indicating differences in structure thickness and expansion/contraction for these regions. No relationships with volume were observed. CONCLUSION: Results provide evidence for the sensitivity of shape measures in differentiating symptomatic mTBI individuals from controls, while volumetric measures did not exhibit this same sensitivity. Disruptions to thalamic nuclei identified here highlight the role of the thalamus in the spectrum of symptoms associated with mTBI. Additional work is needed to prospectively, and longitudinally, assess these measures along with cognitive performance and advanced multimodal imaging methods to extend the utility of shape analysis in relation to functional outcomes in this population.


Subject(s)
Brain Concussion/pathology , Brain Concussion/psychology , Military Personnel/psychology , Stress Disorders, Post-Traumatic/pathology , Adolescent , Adult , Brain Concussion/diagnostic imaging , Cross-Sectional Studies , Female , Globus Pallidus/diagnostic imaging , Globus Pallidus/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Self Report , Sensitivity and Specificity , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/psychology , Symptom Assessment , Thalamus/diagnostic imaging , Thalamus/pathology , Young Adult
6.
Neuroimage Clin ; 15: 125-135, 2017.
Article in English | MEDLINE | ID: mdl-28507895

ABSTRACT

Traumatic brain injury (TBI) is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI) cohort, assessed at two time points. Children were first assessed 2-5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM) to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8-18 years old) and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT), with significant structural disruption of the white matter (WM) at 2-5 months post injury. We investigated how this subgroup (TBI-slow, N = 11) differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10) with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.


Subject(s)
Brain Injuries, Traumatic/pathology , Corpus Callosum/pathology , Disease Progression , Hypothalamus/pathology , White Matter/pathology , Adolescent , Atrophy/pathology , Brain Injuries, Traumatic/diagnostic imaging , Child , Corpus Callosum/diagnostic imaging , Female , Follow-Up Studies , Humans , Hypothalamus/diagnostic imaging , Magnetic Resonance Imaging , Male , White Matter/diagnostic imaging
7.
Nat Commun ; 7: 13738, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27976715

ABSTRACT

The volumes of subcortical brain structures are highly heritable, but genetic underpinnings of their shape remain relatively obscure. Here we determine the relative contribution of genetic factors to individual variation in the shape of seven bilateral subcortical structures: the nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus. In 3,686 unrelated individuals aged between 45 and 98 years, brain magnetic resonance imaging and genotyping was performed. The maximal heritability of shape varies from 32.7 to 53.3% across the subcortical structures. Genetic contributions to shape extend beyond influences on intracranial volume and the gross volume of the respective structure. The regional variance in heritability was related to the reliability of the measurements, but could not be accounted for by technical factors only. These findings could be replicated in an independent sample of 1,040 twins. Differences in genetic contributions within a single region reveal the value of refined brain maps to appreciate the genetic complexity of brain structures.


Subject(s)
Brain/anatomy & histology , Organ Size/genetics , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Adult , Aged , Aged, 80 and over , Amygdala/anatomy & histology , Amygdala/diagnostic imaging , Brain/diagnostic imaging , Caudate Nucleus/anatomy & histology , Caudate Nucleus/diagnostic imaging , Female , Genotype , Globus Pallidus/anatomy & histology , Globus Pallidus/diagnostic imaging , Hippocampus/anatomy & histology , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nucleus Accumbens/anatomy & histology , Nucleus Accumbens/diagnostic imaging , Putamen/diagnostic imaging , Putamen/physiology , Reproducibility of Results , Thalamus/anatomy & histology , Thalamus/diagnostic imaging , Young Adult
8.
Front Psychol ; 6: 186, 2015.
Article in English | MEDLINE | ID: mdl-25798115

ABSTRACT

On average, the human hippocampus shows structural differences between meditators and non-meditators as well as between men and women. However, there is a lack of research exploring possible sex effects on hippocampal anatomy in the framework of meditation. Thus, we obtained high-resolution magnetic resonance imaging data from 30 long-term meditation practitioners (15 men/15 women) and 30 well-matched control subjects (15 men/15 women) to assess if hippocampus-specific effects manifest differently in male and female brains. Hippocampal dimensions were enlarged both in male and in female meditators when compared to sex- and age-matched controls. However, meditation effects differed between men and women in magnitude, laterality, and location on the hippocampal surface. Such sex-divergent findings may be due to genetic (innate) or acquired differences between male and female brains in the areas involved in meditation and/or suggest that male and female hippocampi are differently receptive to mindfulness practices.

9.
Neurobiol Aging ; 36 Suppl 1: S203-10, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25444607

ABSTRACT

A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor, high-homocysteine levels in the blood, is known to increase risk for Alzheimer's disease and vascular disorders. Here, we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, and surface area) computed from brain magnetic resonance imaging in 803 elderly subjects from the Alzheimer's Disease Neuroimaging Initiative data set. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital, and right temporal regions and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, patients with mild cognitive impairment, or patients with Alzheimer's disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Gray Matter/pathology , Homocysteine/blood , Magnetic Resonance Imaging , Neuroimaging , Aged , Aged, 80 and over , Alzheimer Disease/etiology , Alzheimer Disease/prevention & control , Atrophy , Biomarkers/blood , Female , Folic Acid/administration & dosage , Humans , Life Style , Male , Risk Factors , Vitamin B Complex/administration & dosage
10.
Australas Psychiatry ; 22(3): 260-265, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24554532

ABSTRACT

OBJECTIVE: To describe the development, design and function of an innovative international clinical research network for neuroimaging research, based in Australia, within a joint state health service/medical school. This Australian, US, Scandinavian Imaging Exchange (AUSSIE) network focuses upon identifying neuroimaging biomarkers for neuropsychiatric and neurodegenerative disease. METHODS: We describe a case study of the iterative development of the network, identifying characteristic features and methods which may serve as potential models for virtual clinical research networks. This network was established to analyse clinically-derived neuroimaging data relevant to neuropsychiatric and neurodegenerative disease, specifically in relation to subcortical brain structures. RESULTS: The AUSSIE network has harnessed synergies from the individual expertise of the component groups, primarily clinical neuroscience researchers, to analyse a variety of clinical data. CONCLUSION: AUSSIE is an active virtual clinical research network, analogous to a connectome, which is embedded in health care and has produced significant research, advancing our understanding of neuropsychiatric and neurodegenerative disease through the lens of neuroimaging.

11.
Cell Mol Life Sci ; 70(23): 4449-61, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23817740

ABSTRACT

Several dietary factors and their genetic modifiers play a role in neurological disease and affect the human brain. The structural and functional integrity of the living brain can be assessed using neuroimaging, enabling large-scale epidemiological studies to identify factors that help or harm the brain. Iron is one nutritional factor that comes entirely from our diet, and its storage and transport in the body are under strong genetic control. In this review, we discuss how neuroimaging can help to identify associations between brain integrity, genetic variations, and dietary factors such as iron. We also review iron's essential role in cognition, and we note some challenges and confounds involved in interpreting links between diet and brain health. Finally, we outline some recent discoveries regarding the genetics of iron and its effects on the brain, suggesting the promise of neuroimaging in revealing how dietary factors affect the brain.


Subject(s)
Brain/metabolism , Iron/metabolism , Neuroimaging/methods , Nutrigenomics , Nutritional Status , Dietary Supplements , Humans , Iron/administration & dosage , Iron Regulatory Protein 1/genetics , Iron Regulatory Protein 1/metabolism , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Transferrin/genetics , Transferrin/metabolism
12.
Hum Brain Mapp ; 34(12): 3369-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-22815233

ABSTRACT

Studies linking meditation and brain structure are still relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners. To explore hippocampal features in the framework of meditation, we analyzed high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 controls, closely matched for sex, age, and handedness. Hippocampal formations were manually traced following established protocols. In addition to calculating left and right hippocampal volumes (global measures), regional variations in surface morphology were determined by measuring radial distances from the hippocampal core to spatially matched surface points (local measures). Left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The presence and direction of this global effect was confirmed locally by mapping the exact spatial locations of the group differences. Altogether, radial distances were larger in meditators compared to controls, with up to 15% difference. These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head. Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation. Alternatively, given that meditation positively affects autonomic regulation and immune activity, altered hippocampal dimensions may be one result of meditation-induced stress reduction. However, given the cross-sectional design, the lack of individual stress measures, and the limited resolution of brain data, the exact underlying neuronal mechanisms remain to be established.


Subject(s)
Brain Mapping , Hippocampus/anatomy & histology , Hippocampus/physiology , Negotiating , Adult , Case-Control Studies , Female , Functional Laterality , Humans , Imaging, Three-Dimensional , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
14.
Neuroreport ; 22(8): 391-5, 2011 Jun 11.
Article in English | MEDLINE | ID: mdl-21512418

ABSTRACT

Elevated homocysteine levels are a known risk factor for Alzheimer's disease and vascular disorders. Here we applied tensor-based morphometry to brain magnetic resonance imaging scans of 732 elderly individuals from the Alzheimer's Disease Neuroimaging Initiative study, to determine associations between homocysteine and brain atrophy. Those with higher homocysteine levels showed greater frontal, parietal, and occipital white matter atrophy in the entire cohort, irrespective of diagnosis, age, or sex. This association was also found when considering mild cognitive impairment individuals separately. Vitamin B supplements, such as folate, may help prevent homocysteine-related atrophy in Alzheimer's disease by possibly reducing homocysteine levels. These atrophy profiles may, in the future, offer a potential biomarker to gauge the efficacy of interventions using dietary folate supplementation.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/pathology , Brain/pathology , Cognition Disorders/blood , Cognition Disorders/pathology , Homocysteine/blood , Aged , Brain Mapping , Enzyme-Linked Immunosorbent Assay , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male
15.
J Neurol ; 255(12): 1904-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19224318

ABSTRACT

Myotonic dystrophy type 2 (DM2) is an autosomal dominantly inherited multisystemic disorder and a common cause of muscular dystrophy in adults. Although neuromuscular symptoms predominate, there is clinical and imaging evidence of cerebral involvement. We used voxel-based morphometry (VBM) based on T1-weighted magnetic resonance images to investigate brain morphology in 13 DM2 patients in comparison to 13 sex- and age-matched controls. Further, we employed novel computational surface-based methods that specifically assess callosal thickness. We found grey and white matter loss along cerebral midline structures in our patient group. Grey matter reductions were present in brainstem and adjacent hypothalamic and thalamic regions, while white matter was mainly reduced in corpus callosum. The reduced callosal size was highly significant and independently confirmed by different methods. Our data provide first evidence for grey and white matter loss along brain midline structures in DM2 patients. The reduced size of the corpus callosum further extends the spectrum of white matter changes in DM2 and may represent the morphological substrate of neuropsychological abnormalities previously described in this disorder.


Subject(s)
Cerebrum/pathology , Corpus Callosum/pathology , Myotonic Dystrophy/pathology , Adult , Aged , Brain Stem/pathology , Cerebral Cortex/pathology , Female , Humans , Hypothalamus/pathology , Male , Middle Aged , Myotonic Dystrophy/classification , Nerve Fibers, Myelinated/pathology , Organ Size , Thalamus/pathology
16.
Neuroimage ; 29(4): 1049-57, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16214373

ABSTRACT

While neuroimaging studies have reported neurobiological abnormalities in autism, the underlying tissue abnormalities remain unclear. Quantitative transverse relaxation time (T2) imaging permits the examination of tissue abnormalities in vivo, with increased T2 largely reflecting increased tissue water. Blood flow and the presence of tissue iron may also affect T2. In this study, we used voxel-based relaxometry of the cerebrum and global averages to examine T2 abnormalities in autism. Nineteen males with autism (age: 9.2 +/- 3.0 years) and 20 male controls (age: 10.7 +/- 2.9 years) underwent magnetic resonance imaging at 3.0 T. Quantitative T2 maps, generated through gradient echo sampling of the free induction decay and echo, were segmented into gray matter, white matter, and cerebrospinal fluid. Average cerebral gray and white matter T2 were determined and compared between groups. To assess localized T2 differences, the quantitative T2 maps were warped to a template created for this study, smoothed, and compared using statistical parametric mapping. Patients with autism had an increase in average cerebral white matter T2, although no group differences were seen in average cerebral gray matter T2. Patients with autism also had bilateral regional T2 increases in the gray matter and associated white matter of the parietal lobes (primary sensory association areas) and occipital lobes (visual association areas) and in the white matter within the supplementary motor areas in the frontal lobes. The regional and global elevations in white matter T2 suggest abnormalities of white matter tissue water content in autism, which may represent a neurobiological basis for the aberrant cortical connectivity hypothesized to underlie the disorder.


Subject(s)
Autistic Disorder/diagnosis , Cerebral Cortex/abnormalities , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adolescent , Autistic Disorder/physiopathology , Blood-Brain Barrier/physiology , Brain/pathology , Brain/physiopathology , Brain Mapping , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Cerebrospinal Fluid/physiology , Child , Dominance, Cerebral/physiology , Humans , Intelligence/physiology , Magnetic Resonance Spectroscopy/methods , Male , Mathematical Computing , Reference Values , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL