Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Food Chem ; 440: 138249, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38183708

ABSTRACT

The present study aimed to explore the key volatile compounds (VCs) that lead to the formation of characteristic flavors in ripe Pu-erh tea (RIPT) fermented by Monascus purpureus (M. purpureus). Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC-MS), orthogonal partial least square-discriminant analysis (OPLS-DA) were employed for a comprehensive analysis of the VCs present in RIPT fermented via different methods and were further identified by odor activity value (OAV). The VCs 1,2-dimethoxybenzene, 1,2,3-trimethoxybenzene, (E)-linalool oxide (pyranoid), methyl salicylate, linalool, ß-ionone, ß-damascenone were the key characteristic VCs of RIPT fermented by M. purpureus. OAV and Gas chromatography-olfactometry (GC-O) further indicated that ß-damascenone was the highest contribution VCs to the characteristic flavor of RIPT fermented by M. purpureus. This study reveals the specificities and contributions of VCs present in RIPT under different fermentation methods, thus providing new insights into the influence of microorganisms on RIPT flavor.


Subject(s)
Monascus , Norisoprenoids , Volatile Organic Compounds , Tea/chemistry , Fermentation , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Volatile Organic Compounds/analysis
2.
New Phytol ; 241(3): 1088-1099, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37991013

ABSTRACT

Stoichiometric rules may explain the allometric scaling among biological traits and body size, a fundamental law of nature. However, testing the scaling of elemental stoichiometry and growth to size over the course of plant ontogeny is challenging. Here, we used a fast-growing bamboo species to examine how the concentrations and contents of carbon (C), nitrogen (N) and phosphorus (P), relative growth rate (G), and nutrient productivity scale with whole-plant mass (M) at the culm elongation and maturation stages. The whole-plant C content vs M and N content vs P content scaled isometrically, and the N or P content vs M scaled as a general 3/4 power function across both growth stages. The scaling exponents of G vs M and N (and P) productivity in newly grown mass vs M relationships across the whole growth stages decreased as a -1 power function. These findings reveal the previously undocumented generality of stoichiometric allometries over the course of plant ontogeny and provide new insights for understanding the origin of ubiquitous quarter-power scaling laws in the biosphere.


Subject(s)
Phosphorus , Plants , Plant Development , Body Size , Nitrogen
4.
J Plant Res ; 136(4): 515-525, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37055608

ABSTRACT

Nutrient availability significantly regulates plant growth and metabolic functions, but whether and how the long-term exposure of ancestral plants to contrasting nutrient environments influences offspring phenotypic performance (i.e., transgenerational plasticity) remain poorly addressed. Here we conducted experimental manipulations using Arabidopsis thaliana with the ancestral plants grown in different nitrogen (N) and phosphorus (P) availabilities over eleven consecutive generations, and then examined the offspring phenotypic performance under the interactive effects of current and ancestral nutrient environments. We found that current rather than ancestral nutrient environments dominantly explained the variations in offspring plant traits (i.e., flowering time, aboveground biomass and biomass allocation fractions), suggesting the relatively weak transgenerational effects of ancestral N and P availabilities on offspring phenotypes. In contrast, increasing N and P availabilities in the offspring generation remarkably shortened the flowering time, increased the aboveground biomass, and altered biomass allocation fractions differentially among organs. Despite the overall weak transgenerational phenotypic plasticity, under the low nutrient environment, the offspring of ancestral plants from the low nutrient environment had a significantly higher fruit mass fraction than those from the suitable nutrient environment. Taken together, our findings suggest that A. thaliana exhibits a much stronger within- than trans-generational trait plasticity under contrasting nutrient availabilities, and may provide important insights into the understanding of plant adaptation and evolutionary processes under changing nutrient environments.


Subject(s)
Arabidopsis , Phosphorus , Phosphorus/metabolism , Nitrogen/metabolism , Phenotype , Biomass
5.
Sci Total Environ ; 846: 157456, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35863563

ABSTRACT

High atmospheric nitrogen (N) deposition and low soil phosphorus (P) availability occur simultaneously in tropical areas, and thus tropical plants need to adapt nutrient-use strategies to maintain growth and survival. Therefore, identifying the adaptative strategies of tropical plants at different successional stages under low soil P availability is indispensable. Here, we separately investigated foliar traits, photosynthetic characteristics, and P fractions of 8 species in the primary and secondary tropical forests after 10 years of N and P fertilization. P addition increased foliar P concentrations and deceased N:P ratio in the primary forest and secondary forest. The foliar photosynthetic rates did not significantly respond to nutrient additions, and the foliar photosynthetic P-use efficiency (PPUE) reduced under the P addition in the primary forest. In contrast, the foliar photosynthetic rates and photosynthetic nitrogen (N)-use efficiency (PNUE) were enhanced with nutrient additions in the secondary forest. The allocations of foliar nucleic acid P and residual P were reduced by P addition in the primary forest, whereas the allocation of metabolic P was enhanced and the allocation of residual P was reduced by P addition in the secondary forest. Additionally, a higher proportion of structural P was found in the primary forest, and a higher proportion of metabolic P was observed in the secondary forest. Interesting, structural equation model analysis revealed that the plants decreased the allocation of foliar nucleic acid P and increased the allocation of structural P in the primary forest, thereby reducing photosynthetic rates. Whereas the plants enhanced photosynthetic rates by promoting PPUE and the allocation of foliar metabolic P in the secondary forest. Our findings highlighted tropical plants at different successional stages can reasonably allocate foliar P to regulate photosynthetic rates and acclimate to low P environments.


Subject(s)
Nucleic Acids , Phosphorus , Forests , Nitrogen/analysis , Nucleic Acids/analysis , Phosphorus/analysis , Photosynthesis , Plant Leaves/chemistry , Soil/chemistry , Trees , Tropical Climate
6.
Angew Chem Int Ed Engl ; 61(24): e202203093, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35343044

ABSTRACT

Cyanines have been widely used as the photosensitizers (PSs) in the biomedical field, but controlling their molecular aggregates in nanoparticles (NPs) remains a major challenge. Moreover, the impact of aggregate behaviors of cyanines on the photosensitization is still unclear. Herein, the first anionic cyanine PSs based on a tricyanofuran end group have been designed by achieving supramolecular J-type aggregates in NPs via counterion engineering. Our results indicate that J-type aggregates in NPs can not only bring significantly red-shifted emission, negatively charged surface, and high photostability, but also enable a significant 5-fold increase in singlet oxygen generation efficiency compared to that in the nonaggregate state, providing strong experimental evidence for the superiority of J-aggregates in enhancing photosensitization. Thus, combined with the mitochondria-targeting ability, the J-type aggregate NPs show remarkable in vivo antitumor phototheranostic efficacy, making them have a potential for clinical use.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Quinolines , Coloring Agents , Humans , Mitochondria , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy
7.
J Magn Reson Imaging ; 55(2): 579-591, 2022 02.
Article in English | MEDLINE | ID: mdl-34254384

ABSTRACT

BACKGROUND: 3.0 T non-contrast-enhanced nitroglycerin (NTG)-assisted whole-heart coronary magnetic resonance angiography (MRA) employing Dixon water-fat separation and compressed SENSE (CS-SENSE) acceleration is a promising method for diagnosing coronary artery disease (CAD). PURPOSE: To evaluate the diagnostic performance of this technique for detecting clinically-relevant (≥50% diameter reducing) CAD and to evaluate the difference in NTG-induced coronary vasodilation between patients with and without clinically-relevant CAD. STUDY TYPE: Prospective. POPULATION: Sixty-six patients with suspected CAD. FIELD STRENGTH/SEQUENCE: 3.0 T; CSSENSE, Dixon water-fat separation, three-dimensional segmented turbo field gradient-echo sequence for whole-heart coronary MRA. ASSESSMENT: Overall image quality of coronary MRA was calculated on the basis of all visible coronary segments. The diagnostic performance of coronary MRA for detecting a ≥50% reduction in coronary artery diameter with and without NTG was compared using X-ray coronary angiography (CAG) as the reference. According to CAG, patients were divided into a non-clinically-relevant CAD group and clinically-relevant CAD group, and the difference in NTG-induced vasodilation between the groups was evaluated. STATISTICAL TESTS: Unpaired/paired Student's t-test, Mann-Whitney U test, paired Wilcoxon signed-rank test, χ2 test, McNemar test. A two-tailed P value <0.05 was considered significant. RESULTS: Overall image quality was increased significantly in the coronary MRA images after NTG. The diagnostic performance of the non-NTG vs. NTG-assisted coronary MRA was as follows on a per-patient basis: sensitivity 94.3% vs. 94.3%, specificity 64.5% vs. 83.9%, positive predictive value 75.0% vs. 86.8%, negative predictive value 90.9% vs. 92.9%, and accuracy 80.3% vs. 89.4%, respectively. NTG-induced vasodilation was significantly lower in the clinically-relevant CAD group than in the non-clinically-relevant CAD group (13.7 ± 8.1% vs. 24.1 ± 16.3%). DATA CONCLUSION: Non-contrast Dixon water-fat separation CS-SENSE coronary MRA at 3.0 T can noninvasively detect clinically-relevant CAD and sublingual NTG improved performance. Combining pre- and post-NTG coronary MRA may provide a simple noninvasive and nonionizing test to evaluate coronary vasodilation function. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Nitroglycerin , Water , Coronary Angiography , Coronary Vessels/diagnostic imaging , Humans , Magnetic Resonance Angiography , Prospective Studies , Sensitivity and Specificity , Vasodilator Agents
8.
Article in English | MEDLINE | ID: mdl-34188689

ABSTRACT

BACKGROUND: A considerable uncertainty exists about the relationship between adult metabolic syndrome (MS) and obstructive lung disease (OLD), perhaps owing to systemic inflammation. Therefore, this study aimed to investigate the relationship between MS (with its components) and the patterns of lung function impairment. METHODS: The participants in this study were 3978 adults aged 30-78 years from the baseline cohort of the Ningxia Cohort Study. The participants underwent pulmonary function tests, questionnaire surveys, physical examinations, and analysis of blood specimens. RESULTS: No significant difference in the prevalence of OLD was observed between male (15.9%) and female (14.2%) participants. After adjusting for possible confounding factors (e.g., age and family income), impaired lung function was found to be related to some MS components, such as abdominal obesity, high blood pressure, and low levels of high-density lipoprotein cholesterol (HDL-C) (all P < 0.05). CONCLUSIONS: As an important component of MS, abdominal obesity is related to impaired lung function. Surprisingly, this study found that increased HDL-C levels could accelerate the decline of lung function; it also suggests that in the presence of different metabolic health conditions, especially abdominal obesity and low levels of HDL-C, various metabolic indicators should be comprehensively considered to prevent the decline of lung function. This partly explains the increase in the incidence of two or more chronic diseases. Therefore, the prevention of chronic diseases should shift from single-disease prevention to a comprehensive consideration of multi-disease prevention in the future. Therefore, a more sensitive evaluation of the role of HDL-C in lung function is warranted.

9.
Sci China Life Sci ; 62(8): 1047-1057, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31290101

ABSTRACT

Leaf nitrogen (N) and phosphorus (P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P stoichiometric relationships were mostly conducted using data pooled across taxa, while family/genus-level analyses are rarely reported. Here, we examined global patterns of family-specific leaf N and P stoichiometry using a global data set of 12,716 paired leaf N and P records which includes 204 families, 1,305 genera, and 3,420 species. After determining the minimum size of samples (i.e., 35 records), we analyzed leaf N and P concentrations, N:P ratios and N∼P scaling relationships of plants for 62 families with 11,440 records. The numeric values of leaf N and P stoichiometry varied significantly across families and showed diverse trends along gradients of mean annual temperature (MAT) and mean annual precipitation (MAP). The leaf N and P concentrations and N:P ratios of 62 families ranged from 6.11 to 30.30 mg g-1, 0.27 to 2.17 mg g-1, and 10.20 to 35.40, respectively. Approximately 1/3-1/2 of the families (22-35 of 62) showed a decrease in leaf N and P concentrations and N:P ratios with increasing MAT or MAP, while the remainder either did not show a significant trend or presented the opposite pattern. Family-specific leaf N∼P scaling exponents did not converge to a certain empirical value, with a range of 0.307-0.991 for 54 out of 62 families which indicated a significant N∼P scaling relationship. Our results for the first time revealed large variation in the family-level leaf N and P stoichiometry of global terrestrial plants and that the stoichiometric relationships for at least one-third of the families were not consistent with the global trends reported previously. The numeric values of the family-specific leaf N and P stoichiometry documented in the current study provide critical synthetic parameters for biogeographic modeling and for further studies on the physiological and ecological mechanisms underlying the nutrient use strategies of plants from different phylogenetic taxa.


Subject(s)
Nitrogen/metabolism , Phosphorus/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plants/metabolism , Databases, Factual , Ecosystem , Models, Statistical , Photosynthesis , Phylogeny , Soil , Stereoisomerism , Temperature
10.
Environ Pollut ; 251: 892-900, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31234255

ABSTRACT

Little information is available about the occurrence of neonicotinoid insecticides in surface water and sediment of the metropolitan regions around the rivers in China. Here we investigate the residual level of neonicotinoids in the Guangzhou section of the Pearl River. At least one or two neonicotinoids was detected in each surface water and sediment, and the total amount of neonicotinoids (∑5neonics) in surface water ranged from 92.6 to 321 ng/L with a geometric mean (GM) of 174 ng/L. Imidacloprid, thiamethoxam and acetamiprid were three frequently detected neonicotinoids (100%) from surface water. As for the sediment, total concentration was varied between 0.40 and 2.59 ng/g dw with a GM of 1.12 ng/g dw, and acetamiprid and thiacloprid were the common sediment neonicotinoids. Western and Front river-route of the Guangzhou section of the Pearl River suffered a higher neonicotinoids contamination than the Rear river-route, resulting from more effluents of WWTPs receiving, and intensive commercial and human activities. Level of residual neonicotinoids in surface water was significantly correlated with the water quality (p < 0.01), especially items of pH, DO and ORP, and nitrogen and phosphorus contaminants. Compared with reports about residual neonicotinoids in water and sediment previously, the metropolitan regions of the Guangzhou could be confronted with a moderate contamination and showed serious ecological threats (even heavier than the Pearl Rivers). Our results will provide valuable data for understanding of neonicotinoids contamination in the Pearl River Delta and be helpful for further assessing environmental risk of neonicotinoids.


Subject(s)
Geologic Sediments/analysis , Insecticides/analysis , Neonicotinoids/analysis , Nitro Compounds/analysis , Rivers/chemistry , Thiazines/analysis , Water Pollutants, Chemical/analysis , China , Nitrogen/analysis , Phosphorus/analysis , Water Quality
11.
Article in English | MEDLINE | ID: mdl-30524480

ABSTRACT

The number of patients with type 2 diabetes mellitus (T2DM) is increasing rapidly worldwide. Glucose transporter 4 (GLUT4) is one of the main proteins that transport blood glucose into the cells and is a target in the treatment of T2DM. In this study, we investigated the mechanism of action of dandelion chloroform extract (DCE) on glucose uptake in L6 cells. The glucose consumption of L6 cell culture supernatant was measured by a glucose uptake assay kit, and the dynamic changes of intracellular GLUT4 and calcium (Ca2+) levels were monitored by laser scanning confocal microscopy in L6 cell lines stably expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM) was traced via myc-GLUT4-mOrange. GLUT4 expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), protein kinase C (PKC), and phosphorylation levels were determined by performing western blotting. GLUT4 mRNA expression was detected by real-time PCR. DCE up-regulated GLUT4 expression, promoted GLUT4 translocation and fusion to the membrane eventually leading to glucose uptake, and induced AMPK phosphorylation in L6 cells. The AMPK inhibitory compound C significantly inhibited DCE-induced GLUT4 expression and translocation while no inhibitory effect was observed by the phosphatidylinositol 3-kinase (PI3K) inhibitor Wortmannin and PKC inhibitor Gö6983. These data suggested that DCE promoted GLUT4 expression and transport to the membrane through the AMPK signaling pathway, thereby stimulating GLUT4 fusion with PM to enhance glucose uptake in L6 cells. DCE-induced GLUT4 translocation was also found to be Ca2+-independent. Together, these findings indicate that DCE could be a new hypoglycemic agent for the treatment of T2DM.

12.
Molecules ; 23(11)2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30424024

ABSTRACT

In today's world, diabetes mellitus (DM) is on the rise, especially type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance. T2DM has high morbidity, and therapies with natural products have attracted much attention in the recent past. In this paper, we aimed to study the hypoglycemic effect and the mechanism of an ethanolic extract of Folium Sennae (FSE) on L6 cells. The glucose uptake of L6 cells was investigated using a glucose assay kit. We studied glucose transporter 4 (GLUT4) expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), and protein kinase C (PKC) phosphorylation levels using western blot analysis. GLUT4 trafficking and intracellular Ca2+ levels were monitored by laser confocal microscopy in L6 cells stably expressing IRAP-mOrange. GLUT4 fusion with plasma membrane (PM) was observed by myc-GLUT4-mOrange. FSE stimulated glucose uptake; GLUT4 expression and translocation; PM fusion; intracellular Ca2+ elevation; and the phosphorylation of AMPK, Akt, and PKC in L6 cells. GLUT4 translocation was weakened by the AMPK inhibitor compound C, PI3K inhibitor Wortmannin, PKC inhibitor Gö6983, G protein inhibitor PTX/Gallein, and PLC inhibitor U73122. Similarly, in addition to PTX/Gallein and U73122, the IP3R inhibitor 2-APB and a 0 mM Ca2+-EGTA solution partially inhibited the elevation of intracellular Ca2+ levels. BAPTA-AM had a significant inhibitory effect on FSE-mediated GLUT4 activities. In summary, FSE regulates GLUT4 expression and translocation by activating the AMPK, PI3K/Akt, and G protein⁻PLC⁻PKC pathways. FSE causes increasing Ca2+ concentration to complete the fusion of GLUT4 vesicles with PM, allowing glucose uptake. Therefore, FSE may be a potential drug for improving T2DM.


Subject(s)
Calcium/metabolism , Cassia/chemistry , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Plant Extracts/pharmacology , Animals , Biological Transport , Biomarkers , Cell Line , Gene Expression , Glucose Transporter Type 4/genetics , Plant Extracts/chemistry , Signal Transduction/drug effects
13.
Environ Pollut ; 243(Pt A): 75-86, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30172126

ABSTRACT

China has been experiencing a rapid increase in nitrogen (N) deposition due to intensified anthropogenic N emissions since the late 1970s. By synthesizing experimental and observational data taken from literature, we reviewed the responses of China's forests to increasing N deposition over time, with a focus on soil biogeochemical properties and acidification, plant nutrient stoichiometry, understory biodiversity, forest growth, and carbon (C) sequestration. Nitrogen deposition generally increased soil N availability and soil N leaching and decreased soil pH in China's forests. Consequently, microbial biomass C and microbial biomass N were both decreased, especially in subtropical forests. Nitrogen deposition increased the leaf N concentration and phosphorus resorption efficiency, which might induce nutrient imbalances in the forest ecosystems. Although experimental N addition might not affect plant species richness in the overstorey, it did significantly alter species composition of understory plants. Increased N stimulated tree growth in temperate forests, but this effect was weak in subtropical and tropical forests. Soil respiration in temperate forests was non-linearly responsive to N additions, with an increase at dosages of <60 kg N ha-1 yr-1 and a decrease at dosages of >60 kg N ha-1 yr-1. However, it was consistently decreased by increased N inputs in subtropical and tropical forests. In light of future trends in the composition (e.g., reduced N vs. oxidized N) and the loads of N deposition in China, further research on the effects of N deposition on forest ecosystems will have critical implications for the management strategies of China's forests.


Subject(s)
Ecosystem , Forests , Nitrogen/metabolism , Plant Development , Soil/chemistry , Trees/metabolism , Carbon/analysis , China , Microbiota/drug effects , Nitrogen/analysis , Nitrogen/pharmacology , Phosphorus/analysis , Plant Development/drug effects , Soil Microbiology , Trees/chemistry , Trees/drug effects
14.
Ann Bot ; 120(6): 937-942, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29028870

ABSTRACT

BACKGROUND AND AIMS: The nitrogen (N) to phosphorus (P) ratio (N:P) has been widely used as a threshold for identifying nutrient limitations in terrestrial plants; however, the associated reliability has not been well assessed. METHODS: The uncertainty of nutrient limitations caused by the N:P threshold was evaluated using two approaches: fertilization experiments synthesized across multiple ecosystems; and random sampling simulation of the impacts of different nutrient sufficiencies and deficiencies. KEY RESULTS: The fertilization experiment data indicated that the types of nutrient limitation determined via N:P thresholds were partly inconsistent with the growth responses observed under N and P additions, i.e. under N:P thresholds of 14 and 16 (or 10 and 20), 32.5 % (or 16.2 %) of the data were inconsistent between these two. The random sampling simulation suggested that N:P thresholds may indicate N (or P) limitations when leaf N (or P) content is sufficient, whereas these thresholds may not indicate N (or P) limitations when leaf N (or P) content is deficient. The error risks calculated from the sampling simulation presented large fluctuations at small sample sizes and decreased as the thresholds of nutrient content sufficiency (or deficiency) increased (or decreased). The N:P thresholds of 10 and 20 showed lower error risks than the thresholds of 14 and 16. CONCLUSIONS: These findings highlight that canonical N:P thresholds have the potential to introduce a large uncertainty when used to detect plant nutrient limitations, suggesting that the error risks should be cautioned in future studies.


Subject(s)
Botany/methods , Nitrogen/metabolism , Phosphorus/metabolism , Plant Physiological Phenomena , Ecosystem , Fertilizers , Reproducibility of Results , Uncertainty
15.
J Sci Food Agric ; 92(12): 2552-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22450931

ABSTRACT

BACKGROUND: Zinc (Zn) deficiency, a major problem limiting crop production worldwide, is common on calcareous soils of China. Using such a Zn-deficient soil supplied adequately with plant mineral nutrients, with or without Zn, 30 Chinese maize genotypes were grown for 30 days in a greenhouse pot experiment and assessed for Zn efficiency (ZE), measured as relative biomass under Zn-limiting compared with non-limiting conditions. RESULTS: Substantial variation in tolerance to low Zn nutritional status was observed within the maize genotypes. Tolerant genotypes did not show Zn deficiency symptoms at the studied early seedling growth, and there was a well-defined relationship between shoot dry matter and the ZE trait. ZE values ranged on average from 45 to 100% for shoot dry weight. Under low available soil Zn conditions, shoot and root dry weights, shoot Zn concentration and content, leaf superoxide dismutase (SOD) activity, leaf area and plant height were all correlated with ZE. Shoot Zn and phosphorus (P) concentrations were negatively correlated. CONCLUSION: Three genotypes (L55 × 178, L114 × 178 and Zhongnong 99) were identified as highly Zn-efficient and three (L53 × 178, L105 × 178 and L99 × 178) as very low in ZE. This selection allows further work to evaluate ZE based on grain yield and grain Zn concentration, including field experiments likely to benefit farmers producing maize on Chinese soils low in available Zn.


Subject(s)
Adaptation, Biological/genetics , Biomass , Genotype , Plant Structures/growth & development , Soil/chemistry , Zea mays/genetics , Zinc/metabolism , China , Fertilizers , Phosphorus/metabolism , Plant Structures/metabolism , Stress, Physiological/genetics , Superoxide Dismutase/metabolism , Zea mays/growth & development , Zea mays/metabolism , Zinc/deficiency
16.
Zhong Yao Cai ; 34(5): 720-3, 2011 May.
Article in Chinese | MEDLINE | ID: mdl-21954559

ABSTRACT

OBJECTIVE: To study the chemical constituents from the flowers of Ophiopogon japonicus. METHODS: Column chromatography and spectral analysis were used to isolate and identify the constituents. RESULTS: Eleven compounds were obtained and identified as beta-sitosterol (I), diosgenin (II), daucosterol (III), ophiopogonin C' (IV), dioscin (V), 7-dihy-droxy-6-methyl-3-(4'-hydroxybenzyl) chroman-4-one(VI), luteolin (VII), kaempferol-3-O-beta-D-glucopyranosides (VIII), kaempferol-3-O-(6"-tigloyl) -beta-D-glucopyranosides (IX), kaempferol-3-O-(6"-acetyl) -beta-D-glucopyranosides (X), glucose (XI). CONCLUSION: Eleven compounds are obtained from the flowers of O. japonicus for the first time. Compond VI is isolated as a simple substance compound of O. japonicus for the first time. Componds VII, VIII, IX and X are isolated from this genus for the first time.


Subject(s)
Flavonols/isolation & purification , Flowers/chemistry , Glucosides/isolation & purification , Ophiopogon/chemistry , Flavonols/chemistry , Glucosides/chemistry , Luteolin/chemistry , Luteolin/isolation & purification , Molecular Structure , Plants, Medicinal/chemistry , Sitosterols/chemistry , Sitosterols/isolation & purification
17.
Zhong Yao Cai ; 33(11): 1727-30, 2010 Nov.
Article in Chinese | MEDLINE | ID: mdl-21434433

ABSTRACT

OBJECTIVE: To study the chemical constituents of the root tube from Pteroxygonum giraldii. METHODS: Column chromatography and spectral analysis were used to isolate and identify the constituents. RESULTS: Ten compounds were isolated and identified as beta-sitosterol (I), beta-sitosterol glucoside (II), 4', 5,5', 7-tetrahydroxy-3'-methoxy-3'-O-alpha-L-arabinopyranosyl flavone (III), gallic acid (IV), myricetin (V), annulatin (VI), 5,5', 7-trihydroxy-2',3-dimethoxy-4'-O-beta-D-glucopyranosyl flavone (VII), 2', 5,5',7-tetrahydroxy -3-methoxy-4'-O-beta-D-glucopyranoside flavone (VIII), myricetin-3-O-alpha-L-rhamnopyranoside (IX) and myricetin-3,4'-dimethyl ether( X). CONCLUSION: Compounds I, II, V, VIII and X are isolated from Pteroxygonum giraldii for the first time.


Subject(s)
Flavonoids/isolation & purification , Plants, Medicinal/chemistry , Polygonaceae/chemistry , Sitosterols/isolation & purification , Flavonoids/chemistry , Gallic Acid/chemistry , Gallic Acid/isolation & purification , Molecular Structure , Plant Roots/chemistry , Sitosterols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL