Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Pineal Res ; 66(3): e12550, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30597622

ABSTRACT

Female fertility irreversibly declines with aging, and this is primarily associated with the decreased quality and quantity of oocytes. To evaluate whether a long-term of melatonin treatment would improve the fertility of aged mice, different concentrations of melatonin (10-3 , 10-5 , 10-7  mol/L) were supplemented into drinking water. Melatonin treatments improved the litter sizes of mice at the age of 24 weeks. Mice treated with 10-5  mol/L melatonin had the largest litter size among other concentrations. At this optimal concentration, melatonin not only significantly increased the total number of oocytes but also their quality, having more oocytes with normal morphology that could generate more blastocyst after in vitro fertilization in melatonin (10-5  mol/L)-treated group than that in the controls. When these blastocysts were transferred to recipients, the litter size was also significantly larger in melatonin treated mice than that in controls. The increases in TAOC and SOD level and decreases in MDA were detected in ovaries and uterus from melatonin-treated mice compared to the controls. Melatonin reduced ROS level and maintained mitochondrial membrane potential in the oocytes cultured in vitro. Mechanistically studies revealed that the beneficial effects of melatonin on oocytes were mediated by MT1 receptor and AMPK pathway. Thereafter, MT1 knocking out (MT1-KO) were generated and shown significantly reduced number of oocytes and litter size. The expression of SIRT1, C-myc, and CHOP were downregulated in the ovary of MT1-KO mice, but SIRT1 and p-NF-kB protein level were elevated in response to disturbed redox balance. The results have convincingly proven that melatonin administration delays ovary aging and improves fertility in mice via MT1/AMPK pathway.


Subject(s)
Aging/drug effects , Fertility/drug effects , Melatonin/pharmacology , Ovary/drug effects , AMP-Activated Protein Kinases/metabolism , Aging/physiology , Animals , Female , Fertility/physiology , Mice , Mice, Knockout , Ovary/metabolism , Receptor, Melatonin, MT1/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
2.
Int J Mol Sci ; 18(5)2017 May 05.
Article in English | MEDLINE | ID: mdl-28475125

ABSTRACT

CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) combined with pronuclear microinjection has become the most effective method for producing transgenic animals. However, the relatively low embryo developmental rate limits its application. In the current study, it was observed that 10-7 M melatonin is considered an optimum concentration and significantly promoted the in vitro development of murine microinjected pronuclear embryos, as indicated by the increased blastocyst rate, hatching blastocyst rate and blastocyst cell number. When these blastocysts were implanted into recipient mice, the pregnancy rate and birth rate were significantly higher than those of the microinjected control, respectively. Mechanistic studies revealed that melatonin treatment reduced reactive oxygen species (ROS) production and cellular apoptosis during in vitro embryo development and improved the quality of the blastocysts. The implantation of quality-improved blastocysts led to elevated pregnancy and birth rates. In conclusion, the results revealed that the anti-oxidative and anti-apoptotic activities of melatonin improved the quality of microinjected pronuclear embryos and subsequently increased both the efficiency of embryo implantation and the birth rate of the pups. Therefore, the melatonin supplementation may provide a novel alternative method for generating large numbers of transgenic mice and this method can probably be used in human-assisted reproduction and genome editing.


Subject(s)
Antioxidants/pharmacology , Apoptosis , Embryo Culture Techniques/methods , Embryo Transfer/methods , Embryo, Mammalian/drug effects , Melatonin/pharmacology , Oxidative Stress , Animals , Female , Male , Mice
3.
Int J Mol Sci ; 18(4)2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28420163

ABSTRACT

(1) Background: The binding sites of melatonin, as a multifunctional molecule, have been identified in human, porcine, and bovine samples. However, the binding sites and mechanisms of melatonin have not been reported in sheep; (2) Methods: Cumulus-oocyte complexes (COCs) were cultured in TCM-199 supplemented with melatonin at concentrations of 0, 10-3, 10-5, 10-7, 10-9, and 10-11 M. Melatonin receptors (MT1 and MT2) were evaluated via immunofluorescence and Western blot. The effects of melatonin on cumulus cell expansion, nuclear maturation, embryo development, and related gene (GDF9, DNMT1, PTX3, HAS2, and EGFR) expression were investigated. The level of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were evaluated in oocytes and cumulus, respectively; (3) Results: Both MT1 and MT2 were expressed in oocytes, cumulus cells, and granulosa cells. Melatonin with a concentration of 10-7 M significantly enhanced the rates of nuclear maturation, cumulus cells expansion, cleavage, and blastocyst. Melatonin enhanced the expression of BMP15 in oocytes and of PTX3, HAS2, and EGFR in cumulus cells. Melatonin decreased the cAMP level of oocytes but enhanced the cGMP level in oocytes and cumulus cells; (4) Conclusion: The higher presence of MT1 in GV cumulus cells and the beneficial effects of melatonin indicated that its roles in regulating sheep oocyte maturation may be mediated mainly by the MT1 receptor.


Subject(s)
Cell Differentiation/drug effects , Melatonin/metabolism , Melatonin/pharmacology , Oocytes/cytology , Oocytes/metabolism , Receptors, Melatonin/metabolism , Animals , Cumulus Cells/drug effects , Cumulus Cells/metabolism , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Embryonic Development/genetics , Female , Gene Expression , Gene Expression Regulation, Developmental , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Sheep
4.
Article in English | MEDLINE | ID: mdl-27274843

ABSTRACT

BACKGROUND: Resveratrol, an important phyto-antioxidant commonly found in grapes, mulberry, and other plants, has a variety of functions including anti-aging, anti-cancer and anti-inflammatory activities. In the current study, we investigated the beneficial effects of resveratrol on in vitro porcine oocyte maturation under heat stress (HS). The effect of resveratrol, melatonin and their combination on alleviating HS was compared according to the maturation rate of oocytes and the development competence of embryos after parthenogenetic activation (PA). RESULTS: Supplementation with resveratrol (2.0 µmol/L) not only improved the nuclear maturation but also raised the blastocyst rate of porcine embryos' PA from oocytes that underwent HS by increasing their glutathione (GSH) level, reducing reactive oxygen species (ROS) and up-regulating the expression of Sirtuin 1 (SIRT1). It was also found that melatonin (10(-7) mol/L) and the combination of resveratrol (2.0 µmol/L) plus melatonin (10(-7) mol/L) exhibited more potent effects than resveratrol alone regarding their protective activities on oocyte maturation under HS. CONCLUSIONS: This study compared the efficiencies of resveratrol, melatonin and their combination for protecting porcine oocytes from heat stress. The mechanisms are attributed to the fact that each treatment may have different ability to regulate the synthesis of steroid hormones and the expression of mature related genes.

5.
J Pineal Res ; 57(3): 239-47, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25070516

ABSTRACT

This study was performed to investigate the effect of melatonin on bovine oocyte maturation and subsequent embryonic development in vitro. The endogenous melatonin concentration in bovine follicular fluid is approximately 10(-11) M. To examine the potential beneficial effects of melatonin on bovine oocyte maturation in vitro, germinal vesicle (GV) oocytes were incubated with different concentrations of melatonin (10(-11), 10(-9), 10(-7), 10(-5), 10(-3) M). Melatonin supplementation at suitable concentrations significantly promoted oocyte maturation. The development of embryos and the mean cell number/blastocyst produced after in vitro fertilization were remarkably improved. The most effective melatonin concentrations obtained from the studies ranged from 10(-9) to 10(-7) M. The expression of melatonin receptor MT1 and MT2 genes was identified in cumulus cells, granulosa cells, and oocytes using reverse transcription PCR, immunofluorescence, and Western blot. The mechanistic studies show that the beneficial effects of melatonin on bovine oocyte maturation are mediated via melatonin membrane receptors as the melatonin receptor agonist (IIK7) promotes this effect while the melatonin receptor antagonist (luzindole) blocks this action. Mechanistic explorations revealed that melatonin supplementation during bovine oocyte maturation significantly up-regulated the expressions of oocyte maturation-associated genes (GDF9, MARF1, and DNMT1a) and cumulus cells expansion-related gene (PTX3, HAS1/2) and that LHR1/2, EGFR are involved in signal transduction and epigenetic reprogramming. The results obtained from the studies provide new information regarding the mechanisms by which melatonin promotes bovine oocyte maturation in vitro and provide an important reference for in vitro embryo production of bovine and the human-assisted reproductive technology.


Subject(s)
Melatonin/pharmacology , Oocytes/drug effects , Animals , Base Sequence , Blotting, Western , Cattle , DNA Primers , Dose-Response Relationship, Drug , Female , Fluorescent Antibody Technique , Oocytes/physiology , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation/drug effects
6.
PLoS One ; 9(4): e93641, 2014.
Article in English | MEDLINE | ID: mdl-24695534

ABSTRACT

To evaluate the potential effects of melatonin on the kinetics of embryo development and quality of blastocyst during the process of in vitro bovine embryo culture. Bovine cumulus-oocyte complexes (COCs) were fertilized after in vitro maturation. The presumed zygotes were cultured in in vitro culture medium supplemented with or without 10(-7) M melatonin. The cleavage rate, 8-cell rate and blastocyst rate were examined to identify the kinetics of embryo development. The hatched blastocyst rate, mortality rate after thawing and the relevant transcript abundance were measured to evaluate the quality of blastocyst. The results showed that melatonin significantly promoted the cleavage rate and 8-cell embryo yield of in vitro produced bovine embryo. In addition, significantly more blastocysts were observed by Day 7 of embryo culture at the presence of melatonin. These results indicated that melatonin accelerated the development of in vitro produced bovine embryos. Following vitrification at Day 7 of embryo culture, melatonin (10(-7) M) significantly increased the hatched blastocyst rate from 24 h to 72 h and decreased the mortality rate from 48 h to 72 h after thawing. The presence of melatonin during the embryo culture resulted in a significant increase in the gene expressions of DNMT3A, OCC, CDH1 and decrease in that of AQP3 after thawing. In conclusion, melatonin not only promoted blastocyst yield and accelerated in vitro bovine embryo development, but also improved the quality of blastocysts which was indexed by an elevated cryotolerance and the up-regulated expressions of developmentally important genes.


Subject(s)
Adaptation, Physiological , Blastocyst/drug effects , Cold Temperature , Embryo, Mammalian/drug effects , Fertilization in Vitro , Gene Expression/drug effects , Melatonin/pharmacology , Animals , Base Sequence , Blastocyst/cytology , Cattle , DNA Primers , Embryo, Mammalian/metabolism , Polymerase Chain Reaction
7.
J Pineal Res ; 47(4): 318-23, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19817971

ABSTRACT

This study focused on the effect of melatonin on in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Melatonin was measured in porcine follicular fluid of follicles of different sizes in the same ovary. Melatonin exists in follicular fluid, and the concentration is approximately 10(-11) m. Its concentration decreased as the diameter of follicle increased, which suggests an effect of melatonin on oocyte maturation. Therefore, immature oocytes were cultured in vitro in maturation medium supplemented with melatonin (10(-11), 10(-9), 10(-7), 10(-5) and 10(-3) m) or without melatonin. The oocytes at maturation stage were collected and activated. The parthenogenetic embryos were cultured and observed in medium supplemented with or without melatonin. Fresh immature oocytes without melatonin treatment were used as control. When only maturation medium was supplemented with 10(-9) m melatonin, the cleavage rate, blastocyst rate and the cell number of blastocyst (70 +/- 4.5%, 28 +/- 2.4% and 50 +/- 6.5%) were significantly higher (P < 0.05) than that of controls; when only culture medium was supplemented with melatonin, the highest cleavage rate, blastocyst rate and the cell number of blastocyst was observed at 10(-7) m melatonin, which were significantly higher than that of controls (P < 0.05). The best results (cleavage rates 79 +/- 8.4%, blastocyst rates 35 +/- 6.7%) were obtained when both the maturation and culture medium were supplemented with 10(-9) m melatonin respectively (P < 0.05). In conclusion, exogenous melatonin at the proper concentration may improve the in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Further research is needed to identify the effect of melatonin on in vitro and in vivo oocyte maturation and embryo development in porcine.


Subject(s)
Central Nervous System Depressants/pharmacology , Follicular Fluid/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Oocytes/cytology , Oocytes/drug effects , Animals , Blastocyst/drug effects , Cells, Cultured , Embryonic Development/drug effects , Female , Swine
SELECTION OF CITATIONS
SEARCH DETAIL