Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 10(1): 13068, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747628

ABSTRACT

In the present study, comparative studies of kaolin and kaolin/ZnO nanocomposites for the adsorption of Cr(VI), Fe(III), COD, BOD, and chloride from tannery wastewater were investigated. ZnO nanoparticles and kaolin/ZnO nanocomposites were prepared by sol-gel followed by wet-impregnation methods. The prepared adsorbents were characterized using different analytical tools such as X-ray diffraction, Fourier transforms infrared, high-resolution transmission electron microscopy, energy dispersive spectroscopy, selective area electron diffraction and Brunauer Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS). The HRSEM/EDS/XPS analysis confirmed successful immobilization of clay structural network on the lattice layers of zincite hexagonal structure of ZnO nanoparticles. BET measurement showed an increase in the surface area of kaolin/ZnO nanocomposites (31.8 m2/g) when compared to kaolin (17 m2/g). Batch adsorption studies were carried out by varying the parameters such as contact time, adsorbent dosage and temperature. The maximum removal of Cr(VI) (100%), Fe(III) (98%), COD (95%), BOD (94%) and Chloride (78%) was obtained at 15 min by kaolin/ZnO composites. While 78% Cr(VI), 91% Fe(III), 91% COD, 89% BOD and 73% Chloride were removed by kaolin under the same conditions. The kaolin/ZnO nanocomposites exhibited better adsorption performance than kaolin due to higher surface area of the former than the latter. It was found that the Jovanovic isotherm model fitted the adsorption experimental data most with the highest correlation (R2 > 0.99) for both nanoadsorbents and indicate the occurrence of adsorption on monolayer and heterogeneous surfaces. The mechanism for the adsorption of metal ions in tannery wastewater onto the nano-adsorbents was examined using Weber Morris intra-particle diffusion model and Boyd plot which showed that the adsorption process was both intra-particle and film diffusion controlled. The thermodynamic parameters such as enthalpy change showed that that adsorption of metal ions and other parameters was feasible, spontaneous and endothermic. The ZnO/clay nanocomposites exhibited excellent recyclable and re-useable properties even after six repeated applications and can, therefore, be applied in wastewater treatment for removal of heavy metals and other physicochemical parameters.

2.
J Environ Manage ; 236: 519-533, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30771672

ABSTRACT

In the present work, one-step green synthesis of WO3 based on the interaction of ammonium paratungstate and Spondias mombin leaves extract is reported. Different concentrations of iodine and phosphorus in the range of (2%, 5% and 10%) were firstly incorporated into the prepared WO3 nanoparticles to obtain Iodine doped and Phosphorus doped WO3 nanoparticles respectively. Subsequently, iodine and phosphorus co-doped WO3 nanocomposites was prepared using a wet impregnation method followed by calcination at high temperature. The nanomaterials were characterized by HRSEM, HRTEM, BET, UV-Visible, EDS, XRD and XPS. The photo-oxidation of dyeing wastewater by the synthesized WO3 nanomaterials were tested and assessed using Total organic carbon (TOC) and Chemical oxygen demand (COD) as indicator parameters. XRD and HRSEM analysis demonstrated the formation of only monoclinic phase of WO3 irrespective of the dopants. The UV-Visible diffuse reflectance spectroscopy showed the band gap energy of 2.61 eV for undoped WO3 and 2.02 eV for I-P co-doped WO3 nanocomposites. The surface area of I-P co-doped WO3 (416.18 m2/g) was higher than the undoped WO3 (352.49 m2/g). The XPS demonstrated interstitial and substitution of oxygen (O2-) vacancies in WO3 by I- and P3+ and formed I-P-WO(3-x). The I-P co-doped WO3 exhibited higher catalytic activities (93.4% TOC, 95.1% COD) than the undoped (54.9% TOC, 79.2% COD) due to the synergistic effects between the two dopants. The experimental data better fitted to pseudo-second order than first order and pseudo-first order model. This study demonstrated the enhanced photocatalytic performance of I-P co-doped WO3 nanocomposites under sunlight.


Subject(s)
Iodine , Nanocomposites , Oxides , Phosphorus , Sunlight , Tungsten , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL