Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
3 Biotech ; 14(3): 69, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38362591

ABSTRACT

The objective of this study was to assess the effects of phosphate solubilizing rhizo-microbes inoculants on nutrient balance, physiological adaptation, growth characteristics, and rhizome yield traits as well as curcuminoids yield at the secondary-rhizome initiation stage of turmeric plants, subsequently subjected to water-deficit (WD) stress. Phosphorus contents in the leaf tissues of Talaromyces aff. macrosporus and Burkholderia sp. (Bruk) inoculated plants peaked at 0.33 and 0.29 mg g-1 DW, respectively, under well-watered (WW) conditions; however, phosphorus contents declined when subjected to WD conditions (p ≤ 0.05). Similarly, potassium and calcium contents reached their maximum values at 5.33 and 3.47 mg g-1 DW, respectively, in Burk inoculated plants under WW conditions, which contributed to sustained rhizome fresh weight even when exposed to WD conditions (p ≤ 0.05). There was an increase in free proline content in T. aff. macrosporus and Burk inoculated plants under WD conditions, which played a crucial role in controlling leaf osmotic potential, thereby stabilizing leaf greenness and maximum quantum yield of PSII. As indicators of drought stress, there were noticeable restrictions in stomatal gas exchange parameters, including net photosynthetic rate, stomatal conductance, and transpiration rate, accompanied by an increase in leaf temperature. These changes resulted in reduced total soluble sugar levels. Interestingly, total curcuminoids and curcuminoids yield in Burk inoculated plants under WD conditions were retained, especially in relation to rhizome biomass. Burk inoculation in turmeric plants is recommended as a promising technique as it alleviates water-deficit stress, sustains rhizome biomass, and stabilizes curcuminoids yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03922-x.

2.
Protoplasma ; 261(4): 625-639, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38206421

ABSTRACT

Centella asiatica (Indian pennywort) is a green leafy vegetable containing centelloside' (triterpenoid), a key phytochemical component in traditional medicine. Being a glycophytic species, they exhibit decline in growth performance and yield traits when subjected to water-deficit (WD) conditions. Glycine betaine (GB) is a low molecular-weight organic metabolite that plays a crucial role in abiotic stress conditions in higher plants. The objective of this study was to investigate the potential of GB in alleviating water-deficit stress (in terms of morphological and physiological responses) in two different genotypes of Indian pennywort, "Nakhon Pathom" (NP; high centelloside-yielding genotype) and "Pathum Thani" (PT; low centelloside-yielding genotype). The genotypes of Indian pennywort were propagated by stolon cutting and transplanted into plastic bags containing 2 kg of garden soil. At the flower-initiation stage (30 days after transplantation), uniform plant material was treated exogenously with 0 (control), 25, and 50 mM GB at 100 mL per plant (one-time foliar spray) and then divided into two groups, 1) well watered (WW; irrigated daily with 400 mL fresh water; 98% field capacity) and 2) water deficit (WD; withheld water for 14 days; 72% field capacity). Foliar application of GB (25 mM) significantly improved leaf osmotic potential in NP under WD conditions via osmotic adjustment by free proline and fructose. Differences in leaf temperature (Tleaf) between WD and WW in NP were maximized (+ 1.93 °C) and the gap of Tleaf was reduced in the case of 25-50 mM GB application. Similarly, crop water stress index (CWSI) in NP and PT plants under WD condition was significantly increased by 1.95- and 1.86-fold over the control, respectively; however, it was significantly decreased by exogenous GB application. Increasing Tleaf and CWSI in drought-stressed plants was closely related to stomatal closure, leading to reduced gas exchange parameters, i.e., stomatal conductance (gs), transpiration rate (E), net photosynthetic rate (Pn), and intercellular CO2 concentration (Ci), and consequently decreased plant biomass and total centelloside yield. Overall physiological, morphological, and secondary metabolite traits were enhanced in NP under WD conditions using 25 mM GB exogenous application compared with the control. The study highlights the significance of GB in Indian pennywort production under limited water irrigation (water deficit) with higher vegetable yield and phytochemical stabilization.


Subject(s)
Betaine , Centella , Betaine/pharmacology , Centella/chemistry , Centella/drug effects , Water/metabolism , Stress, Physiological/drug effects , Plant Leaves/drug effects , Dehydration
3.
Physiol Mol Biol Plants ; 29(9): 1289-1299, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38024951

ABSTRACT

Iron (Fe) toxicity in plant species depends on the availability of Fe in the soil, uptake ability by the root system, and translocation rate to other parts of the plant. The aim of this study was to assess Fe uptake by root tissues of Catharanthus roseus, translocation rate to leaf tissues, and the impairment of plant physio-morphological characteristics. Fe uptake by the roots (~ 700 µg g-1 DW) of C. roseus was observed during the early exposure period (1 week), and translocation factor from root to shoot was fluctuated as an independent strategy. A high level of Fe content in the root tissues significantly inhibited root length and root dry weight. Under acidic pH condition, an enrichment of Fe in the shoots (~ 400 µg g-1 DW) led to increase in leaf temperature (> 2.5 °C compared to control) and crop stress index (> 0.6), resulting in stomatal closure, subsequently decreasing CO2 assimilation rate and H2O transpiration rate. An increment of CSI in Fe-stressed plants was negatively related to stomatal conductance, indicating stomatal closure with an increase in Fe in the leaf tissues. High Fe levels in the leaf tissues directly induced toxic symptoms including leaf bronzing, leaf spotting, leaf necrosis, leaf chlorosis, and leaf senescence in C. roseus plants. In summary, C. roseus was identified as a good candidate plant for Fe phytoextraction, depending on Fe bioaccumulation, therefore 50 mM Fe treatment was designated as an excess Fe to cause the growth inhibition, especially in the prolonged Fe incubation periods. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01379-5.

4.
Plant Physiol Biochem ; 202: 107927, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37544120

ABSTRACT

Indian pennywort (Centella asiatica L. Urban; Apiaceae) is a herbaceous plant used as traditional medicine in several regions worldwide. An adequate supply of fresh water in accordance with crop requirements is an important tool for maintaining the productivity and quality of medicinal plants. The objective of this study was to find a suitable irrigation schedule for improving the morphological and physiological characteristics, and crop productivity of Indian pennywort using high-throughput phenotyping. Four treatments were considered based on irrigation schedules (100, 75, 50, and 25% of field capacity denoted by I100 [control], I75, I50, and I25, respectively). The number of leaves, plant perimeter, plant volume, and shoot dry weight were sustained in I75 irrigated plants, whereas adverse effects on plant growth parameters were observed when plants were subjected to I25 irrigation for 21 days. Leaf temperature (Tleaf) was also retained in I75 irrigated plants, when compared with control. An increase of 2.0 °C temperature was detected in the Tleaf of plants under I25 irrigation treatment when compared with control. The increase in Tleaf was attributed to a decreased transpiration rate (R2 = 0.93), leading to an elevated crop water stress index. Green reflectance and leaf greenness remained unchanged in plants under I75 irrigation, while significantly decreased under I50 and I25 irrigation. These decreases were attributed to declined leaf osmotic potential, increased non-photochemical quenching, and inhibition of net photosynthetic rate (Pn). The asiatic acid and total centellosides in the leaf tissues, and centellosides yield of plants under I75 irrigation were retained when compared with control, while these parameters were regulated to maximal when exposed to I50 irrigation. Based on the results, I75 irrigation treatment was identified as the optimum irrigation schedule for Indian pennywort in terms of sustained biomass and a stable total centellosides. However, further validation in the field trials at multiple locations and involving different crop rotations is recommended to confirm these findings.


Subject(s)
Centella , Centella/chemistry , Centella/growth & development , Centella/physiology , Agricultural Irrigation , Biomass , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/physiology , Plant Transpiration , Conservation of Water Resources
5.
Environ Geochem Health ; 45(11): 7637-7649, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37402936

ABSTRACT

Indian camphorweed (Pluchea indica (L.) Less.) is used as herbal tea due to the presence of volatile aromatic oils and several phytochemical compounds. The aim of this study was to assess the impact of copper (Cu) contamination on the physiology and morphology of P. indica, and the health risks associated with its consumption as tea. The cuttings of P. indica were subjected to 0 mM (control), 5 mM (low Cu), and 20 mM (excess Cu) of CuSO4 treatments for 1, 2, and 4 weeks. Thereafter, Cu contamination as well as physiological and morphological parameters were assessed. Cu accumulation was higher in the root tissues of plants (25.8 folds higher as compared to the leaves) grown under 20 mM CuSO4 for 4 weeks. This increased Cu accumulation resulted in the inhibition of root length, root fresh weight, and root dry weight. Cu concentration was found maximum (1.36 µg g-1 DW) in the leaf tissues under 20 mM Cu exposure for 4 weeks, with the highest target hazard quotient (THQ = 1.85), whereas Cu was not detected in control. Under exposure to 20 mM Cu treatment for 4 weeks, leaf greenness, maximum quantum yield of photosystem II, and photon yield of photosystem II diminished by 21.4%, 16.1%, and 22.4%, respectively, as compared to the control. Leaf temperature was increased by 2.5 °C, and the crop stress index (CSI) exceeded 0.6 when exposed to 20 mM Cu treatment for 2 and 4 weeks; however, the control had a CSI below 0.5. This led to a reduced transpiration rate and stomatal conductance. In addition, the net photosynthetic rate was also found sensitive to Cu treatment, which resulted in decreased shoot and root growth. Based on the key results, it can be suggested that P. indica herbal tea derived from the foliage of plants grown under a 5 mM Cu level (0.75 µg g-1 DW) with a target hazard quotient below one aligns with the recommended dietary intake of Cu in leafy vegetables. The study recommends choosing cuttings from plants with a small canopy as plant material in the greenhouse microclimates to validate the growth performance in the Cu-contaminated soil and simulate the natural shrub architecture and life cycle.


Subject(s)
Copper , Teas, Herbal , Copper/toxicity , Copper/chemistry , Photosystem II Protein Complex/metabolism , Photosynthesis , Antioxidants/metabolism , Plant Leaves/metabolism
6.
Sci Rep ; 13(1): 5999, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37046003

ABSTRACT

Arbuscular mycorrhizal ecosystem provides sustainability to plant integrity under drought situations. However, host plants that survive in drought frequently lose yield. The potential of Funneliformis mosseae (F), Claroideoglomus etunicatum (C), and Acaulospora fovaeta (A) was assessed to evaluate in indica rice cv. Leum Pua during booting stage under 21-day water withholding. The effects of three inoculation types; (i) F, (ii) F + C (FC), and (iii) F + C + A (FCA), on physiological, biochemical, and yield traits were investigated. The three types showed an induced total chlorophyll content in the host as compared to uninoculated plants. Total soluble sugars and free proline were less regulated by FC and FCA inoculated plants than by F inoculated plants under water deficit conditions. However, the FC and FCA inoculations increased phosphorus content, particularly in the shoots of water-stressed plants. In the three inoculations, the FCA dramatically improved plant osmotic potential adaptability under water deficit stress. Furthermore, even when exposed to the water deficit condition, panicle weight, grain number, and grain maturity were maintained in FCA inoculated plants. According to the findings, the increased osmotic potential and phosphorus content of the FCA-inoculated rice plant provide a protection sign against drought stress and will benefit food security in the future.


Subject(s)
Mycorrhizae , Oryza , Mycorrhizae/physiology , Oryza/microbiology , Plant Roots/microbiology , Ecosystem , Phosphorus , Dehydration/microbiology , Water/physiology , Plants
7.
J Plant Physiol ; 278: 153829, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36202058

ABSTRACT

Climate change and agricultural malpractices are exacerbating drought in many parts of the world causing a substantial agricultural production loss. The improvement of drought tolerance in rice is crucial for maintaining productivity and ensuring global food security. Alternate wetting and drying (AWD) irrigation along with plant-microbe interaction through arbuscular mycorrhizal fungi (AMF) is a potential approach for enhancing rice production through AMF-induced up-regulation of tolerance and resilience against drought stress. Therefore, the ameliorative role of AMF inoculation and phosphorus (P) application on growth, physiological traits, and grain yield of rice was evaluated under water stress imposed through AWD irrigation. A factorial experiment consisting of four fertilizer treatments where the P percentage varied along with the recommended dose of nitrogen (N) with or without AMF inoculation (P100 as the control, P100 + AMF, P75 + AMF, and P50 + AMF), three soil water potential levels (0, -15, and -30 kPa), and two cultivation methods (wet direct seeding and transplanting) was conducted in a polyhouse. The subscript values of 100, 75, and 50 under P represent 100%, 75%, and 50% of the recommended field application dose. Data were collected on selected growth parameters, physiological traits, levels of mycorrhizal colonization, yield and its components, and water productivity of rice. The results revealed that P100 + AMF inoculated plants had 11%, 14%, 74%, and 54% higher leaf greenness, leaf relative water content, net photosynthetic rate, and grain yield, respectively, for wet direct-seeded plants at reduced soil water potential (-30 kPa) compared with non-inoculated plants (P100). Free proline accumulation gradually enhanced with decreasing soil water potential, and it was maximized by 77% at -30 kPa compared with 0 kPa for P50 + AMF (for transplanted plants). Free proline accumulation was also higher with decreasing soil water potential in AMF-inoculated plants than non-inoculated plants regardless of cultivation methods. Leaf osmotic potential was reduced by -0.5 to -1.2 MPa at -30 kPa compared with 0 kPa under different fertilizer doses. However, AMF inoculation (P100 + AMF and P75 + AMF) improved leaf osmotic potential of plants under severe water stress (-30 kPa) maintained through AWD irrigation resulting in better osmotic adjustment than non-inoculated plants. AMF inoculation improved the response of most of the evaluated physiological traits of rice and enhanced grain yield with higher P availability (even with a 25% reduction in its recommended dose) in the rhizosphere under drought stress. Thus, it can be concluded that AMF inoculation coupled with judicious P management is a promising approach for improving physiological and biochemical traits, grain yield, and water productivity of rice under AWD irrigation regardless of cultivation methods.


Subject(s)
Mycorrhizae , Oryza , Dehydration , Edible Grain , Fertilizers , Mycorrhizae/physiology , Nitrogen , Oryza/physiology , Phosphorus , Proline , Soil
8.
Protoplasma ; 259(2): 301-315, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34023960

ABSTRACT

Turmeric (Curcuma longa L.; Zingiberaceae), an economically important crop and a major spice in Indian cuisine, produces natural yellow color (curcumin) as well as curcuminoids which are widely utilized in traditional and modern medicinal practices. During the turmeric culture, the fluctuations of precipitation and seasonal changes in the whole life cycle play a major role, especially water shortage and decreasing temperature (in winter season), leading to rhizome dormancy under extreme weather conditions. The objective of this investigation was to understand how the water deficit and reduced temperature affect turmeric growth, physiological adaptation, quantity, and quality of turmeric rhizomes. Four-month-old turmeric plants were subjected to four treatments, namely normal temperature and well-watered (RT-WW), or water-deficit (RT-WD) conditions in the greenhouse, 25 °C controlled temperature and well-watered (CT-WW), or water-deficit (CT-WD) conditions in glasshouse. Leaf osmotic potential considerably declined in 30 days CT-WD treatment, leading to chlorophyll degradation by 26.04%, diminution of maximum quantum yield of PSII (Fv/Fm) by 23.50%, photon yield of PSII (ΦPSII) by 29.01%, and reduction of net photosynthetic rate (Pn) by 89.39% over CT-WW (control). After 30 days water withholding, fresh- and dry-weights of rhizomes of turmeric plants grown under CT-WD declined by 30-50% when compared with RT-WW conditions. Subsequently, curcuminoid content was reduced by 40% over RT-WW plants (control), whereas transcriptional expression levels of curcuminoids-related genes (CURS1, CURS2, CURS3, and DCS) were upregulated in CT-WD conditions. In summary, the water withholding and controlled temperature (constant at 25 °C day/night) negatively affected turmeric plants as abiotic stresses tend to limit overall plant growth performances and curcuminoid yield.


Subject(s)
Curcuma , Curcumin , Adaptation, Physiological , Curcuma/metabolism , Curcumin/analysis , Curcumin/metabolism , Curcumin/pharmacology , Diarylheptanoids/metabolism , Plant Extracts/pharmacology , Temperature , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL