Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Publication year range
1.
Nat Prod Res ; : 1-5, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497278

ABSTRACT

Rauvolfia mannii is a plant from western and eastern areas of African continent and is widely used in folk medicine for the treatment of various diseases including malaria. Herein, one previously undescribed acylated triterpene (1), together with five already published natural products (2-6) were removed from its roots. The chemical structures of these compounds were determined by spectroscopic and spectrometric means (NMR, HRESIMS, IR and UV). In addition to the isolated triterpenoids, components 5 and 6 are also newly reported from the genus Rauvolfia. Moreover, some constituents were further tested against the chloroquine-sensitive strain of P. falciparum (3D7). It has been found that 3 and 4 showed a moderate antiplasmodial activity with IC50 values of 46.25 and 39.79 µM respectively.

2.
Fitoterapia ; 137: 104274, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31344394

ABSTRACT

We have previously demonstrated that out of the butyrolactones series synthesized based on the natural lichen metabolite lichesterinic acid, compound (B-13) was the most effective against oral bacteria. However, its antibacterial mechanism is still unknown. In this study, we have investigated its bacterial localization by synthesizing a fluorescently labeled B-13 with NBD while maintaining its antibacterial activity. We showed that this compound binds to Streptococcus gordonii cell surface, as demonstrated by HPLC analysis. By adhering to cell surface, B-13 induced cell wall disruption leading to the release of bacterial constituents and consequently, the death of S. gordonii, a Gram-positive bacterium. A Gram-negative counterpart, Porphyromanas gingivalis, showed also cracked and ruptured cells in the presence of B-13. Besides, we also demonstrated that the analog of B-13, B-12, has also induced disruption of P. gingivalis and S. gordonii. This study revealed that butyrolactones can be considered as potent antibacterial compounds against oral pathogens causing medical complications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lactones/pharmacology , Lichens/chemistry , Porphyromonas gingivalis/drug effects , Streptococcus gordonii/drug effects , Cell Membrane/drug effects , Microbial Sensitivity Tests , Molecular Structure
3.
Fitoterapia ; 131: 182-188, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30339926

ABSTRACT

Secondary metabolites from lichens are known for exhibiting various biological effects such as anti-inflammatory, antioxidant and antibacterial activities. Despite this wide range of reported biological effects, their impact on the formation of advanced glycation end products (AGEs) remains vastly unexplored. The latter are known contributors to lifestyle and age-related diseases such as Alzheimer and Parkinson. Moreover, the development of atherosclerosis and arterial stiffness is causally linked to the formation of AGEs. With this in mind, the present work evaluated the inhibitory effects of secondary lichen metabolites on the formation of pentosidine-like AGEs' by using an in vitro, Maillard reaction based, fluorescence assay. Overall, thirty-seven natural and five synthetically modified compounds were tested, eighteen of which exhibiting IC50 values in the range of 0.05 to 0.70 mM. This corresponds to 2 to 32 fold of the inhibitory activity of aminoguanidine. Targeting one major inhibiting mechanism of AGEs formation, all compounds were additionally evaluated on their radical scavenging capacities in an DPPH assay. Furthermore, as both AGEs' formation and hypertension are major risk factors for atherosclerosis, compounds that were available in sufficient amounts were also tested for their vasodilative effects. Overall, and though some of the active compounds were previously reported cytotoxic, present results highlight the interesting potential of secondary lichen metabolites as anti-AGEs and vasodilative agents.


Subject(s)
Biological Products/pharmacology , Glycation End Products, Advanced/antagonists & inhibitors , Lichens/chemistry , Vasodilator Agents/pharmacology , Animals , Biological Products/isolation & purification , Male , Molecular Structure , Rats, Inbred WKY , Secondary Metabolism , Vasodilator Agents/isolation & purification
4.
Fitoterapia ; 121: 164-169, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28736072

ABSTRACT

The oral bacteria not only infect the mouth and reside there, but also travel through the blood and reach distant body organs. If left untreated, the dental biofilm that can cause destructive inflammation in the oral cavity may result in serious medical complications. In dental biofilm, Streptococcus gordonii, a primary oral colonizer, constitutes the platform on which late pathogenic colonizers like Porphyromonas gingivalis, the causative agent of periodontal diseases, will bind. The aim of this study was to determine the antibacterial activity of eleven natural lichen compounds belonging to different chemical families and spanning from linear into cyclic and aromatic structures to uncover new antibiotics which can fight against the oral bacteria. The compounds were screened by broth microdilution assay. Three compounds were shown to have promising antibacterial activities where the depsidone core with certain functional groups constituted the best compound, psoromic acid, with the lowest MICs=11.72 and 5.86µg/mL against S. gordonii and P. gingivalis, respectively. The compounds screened had promising antibacterial activity which might be attributed to some important functional groups as discussed in our study. The best compounds did not induce the death of gingival epithelial carcinoma cells (Ca9-22). These results introduce new compounds having potent antibacterial activities against oral pathogens causing serious medical complications.


Subject(s)
Anti-Bacterial Agents/chemistry , Lichens/chemistry , Porphyromonas gingivalis/drug effects , Streptococcus gordonii/drug effects , Anti-Bacterial Agents/isolation & purification , Biofilms/drug effects , Cell Line, Tumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Mouth/microbiology , Periodontal Diseases/microbiology
5.
Phytomedicine ; 23(12): 1527-1534, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27765373

ABSTRACT

BACKGROUND: Natural products from lichens are widely investigated for their biological properties, yet their potential as central nervous system (CNS) therapeutic agents is less explored. PURPOSE: The present study investigated the neuroactive properties of selected lichen compounds (atranorin, perlatolic acid, physodic acid and usnic acid), for their neurotrophic, neurogenic and acetylcholine esterase (AChE) activities. METHODS: Neurotrophic activity (neurite outgrowth) was determined using murine neuroblastoma Neuro2A cells. A MTT assay was performed to assess the cytotoxicity of compounds at optimum neurotrophic activity. Neuro2A cells treated with neurotrophic lichen compounds were used for RT-PCR to evaluate the induction of genes that code for the neurotrophic markers BDNF and NGF. Immunoblotting was used to assess acetyl H3 and H4 levels, the epigenetic markers associated with neurotrophic and/or neurogenic activity. The neurogenic property of the compounds was determined using murine hippocampal primary cultures. AChE inhibition activity was performed using a modified Ellman's esterase method. RESULTS: Lichen compounds atranorin, perlatolic acid, physodic acid and (+)-usnic acid showed neurotrophic activity in a preliminary cell-based screening based on Neuro2A neurite outgrowth. Except for usnic acid, no cytotoxic effects were observed for the two depsides (atranorin and perlatolic acid) and the alkyl depsidone (physodic acid). Perlatolic acid appears to be promising, as it also exhibited AChE inhibition activity and potent proneurogenic activity. The neurotrophic lichen compounds (atranorin, perlatolic acid, physodic acid) modulated the gene expression of BDNF and NGF. In addition, perlatolic acid showed increased protein levels of acetyl H3 and H4 in Neuro2A cells. CONCLUSION: These lichen depsides and depsidones showed neuroactive properties in vitro (Neuro2A cells) and ex vivo (primary neural stem or progenitor cells), suggesting their potential to treat CNS disorders.


Subject(s)
Benzoates/pharmacology , Benzofurans/pharmacology , Central Nervous System/drug effects , Depsides/pharmacology , Dibenzoxepins/pharmacology , Hydroxybenzoates/pharmacology , Lactones/pharmacology , Lichens/chemistry , Acetylcholinesterase/metabolism , Animals , Benzoates/therapeutic use , Benzofurans/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Line , Central Nervous System/metabolism , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Cholinesterase Inhibitors/pharmacology , Depsides/therapeutic use , Dibenzoxepins/therapeutic use , Gene Expression , Hydroxybenzoates/therapeutic use , Lactones/therapeutic use , Mice , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Neural Stem Cells , Neurogenesis/drug effects , Neurogenesis/genetics
6.
Planta Med ; 82(13): 1143-52, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27220082

ABSTRACT

This review presents the state of knowledge on the medicinal potential of bacteria associated with lichens. In fact, besides the classical symbiotic partners (photobiont and mycobiont) forming the lichen thallus, associated bacteria have been recently described as a third partner. Various studies demonstrated the diversity of these communities with a predominance of Alphaproteobacteria. Bacterial groups more relevant for secondary metabolite synthesis have also been revealed. This article summarizes studies reporting the abilities of these communities to produce metabolites with relevant bioactivities. The biotechnological interest of these bacteria for drug discovery is highlighted regarding the production of compounds with therapeutic potential. Special focus is given to the synthesis of the most promising compound, uncialamycin, a potent enediyne isolated from a Streptomyces sp. associated with Cladonia uncialis.


Subject(s)
Alphaproteobacteria/chemistry , Anthraquinones/therapeutic use , Lichens/microbiology , Alphaproteobacteria/isolation & purification , Anthraquinones/chemical synthesis , Anthraquinones/chemistry , Anthraquinones/isolation & purification , Drug Discovery , Streptomyces/chemistry
7.
Phytochem Anal ; 26(1): 23-33, 2015.
Article in English | MEDLINE | ID: mdl-25130294

ABSTRACT

INTRODUCTION: Lichens are self-sustaining partnerships comprising fungi as shape-forming partners for their enclosed symbiotic algae. They produce a tremendous diversity of metabolites (1050 metabolites described so far). OBJECTIVES: A comparison of metabolic profiles in nine lichen species belonging to three genera (Lichina, Collema and Roccella) by using an optimised extraction protocol, determination of the fragmentation pathway and the in situ localisation for major compounds in Roccella species. METHODS: Chemical analysis was performed using a complementary study combining a Taguchi experimental design with qualitative analysis by high-performance liquid chromatography coupled with mass spectrometry techniques. RESULTS: Optimal conditions to obtain the best total extraction yield were determined as follows: mortar grinding to a fine powder, two successive extractions, solid:liquid ratio (2:60) and 700 rpm stirring. Qualitative analysis of the metabolite profiling of these nine species extracted with the optimised method was corroborated using MS and MS/MS approaches. Nine main compounds were identified: 1 ß-orcinol, 2 orsellinic acid, 3 putative choline sulphate, 4 roccellic acid, 5 montagnetol, 6 lecanoric acid, 7 erythrin, 8 lepraric acid and 9 acetylportentol, and several other compounds were reported. Identification was performed using the m/z ratio, fragmentation pathway and/or after isolation by NMR analysis. The variation of the metabolite profile in differently organised parts of two Roccella species suggests a specific role of major compounds in developmental stages of this symbiotic association. CONCLUSION: Metabolic profiles represent specific chemical species and depend on the extraction conditions, the kind of the photobiont partner and the in situ localisation of major compounds.


Subject(s)
Lichens/metabolism , Metabolome , Metabolomics/methods , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Lichens/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Tandem Mass Spectrometry
8.
J Nat Prod ; 70(7): 1218-20, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17629329

ABSTRACT

Two new beta-orcinol depsidones, 1 and 2, together with 13 known compounds were isolated from the lichen Usnea articulata. The structures of 1 and 2 were elucidated by spectroscopic analyses and those of known compounds by comparison of their spectroscopic data with literature values or by direct comparison with authentic standards. Compounds 1, 2, and 5 exhibited moderate antiradical activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The depsidones 4 and 5 showed better superoxide anion scavenging activity (IC50 = 566 and 580 microM, respectively) than quercetin (IC50 = 754 microM).


Subject(s)
Antioxidants/isolation & purification , Antioxidants/pharmacology , Depsides/isolation & purification , Depsides/pharmacology , Free Radical Scavengers/isolation & purification , Heterocyclic Compounds, 4 or More Rings/isolation & purification , Lactones/isolation & purification , Lactones/pharmacology , Oxepins/isolation & purification , Usnea/chemistry , Antioxidants/chemistry , Biphenyl Compounds , Depsides/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Indonesia , Inhibitory Concentration 50 , Lactones/chemistry , Molecular Structure , Oxepins/chemistry , Oxepins/pharmacology , Picrates/pharmacology , Quercetin/pharmacology , Superoxides/pharmacology
9.
Planta Med ; 70(9): 874-7, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15386197

ABSTRACT

The depsidone 9'-( O-methyl)protocetraric acid was isolated from the lichen Cladonia convoluta (Lam.) Anders along with the known (-)-usnic acid and fumarprotocetraric acid. The complete structure of 9'-( O-methyl)protocetraric acid was elucidated using HSQC and HMBC spectral data. (-)-Usnic acid was the only compound to display a moderate cytotoxic activity on various cancer cell lines (IC (50) = 6, 12.1, 15.8, 17.8, 8.2 and 6.8 microg/mL on L1210, 3LL, DU145, MCF7, K-562 and U251, respectively). This compound was also shown to induce apoptosis of murine leukaemia L1210 cells in a dose- and time-dependent manner.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Ascomycota , Phytotherapy , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor/drug effects , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Lichens , Mice , Plant Extracts/administration & dosage , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL