Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biochim Biophys Acta ; 1842(9): 1658-67, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24946182

ABSTRACT

Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca(2+) retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca(2+)-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca(2+) uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca(2+), respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/deficiency , Cardiomyopathies/metabolism , Cerebral Cortex/drug effects , Energy Metabolism/drug effects , Lauric Acids/pharmacology , Lipid Metabolism, Inborn Errors/metabolism , Mitochondria/drug effects , Mitochondrial Myopathies/metabolism , Mitochondrial Trifunctional Protein/metabolism , Myristic Acids/pharmacology , Nervous System Diseases/metabolism , Palmitic Acids/pharmacology , Rhabdomyolysis/metabolism , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cardiomyopathies/pathology , Cerebral Cortex/metabolism , Cytochromes c/metabolism , Homeostasis , Hydrogen Peroxide/metabolism , Lipid Metabolism, Inborn Errors/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Myopathies/pathology , Mitochondrial Permeability Transition Pore , Mitochondrial Swelling/drug effects , NADP/metabolism , Nervous System Diseases/pathology , Oxidants/metabolism , Rats , Rats, Wistar , Rhabdomyolysis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL