Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 71(36): 13554-13565, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37638888

ABSTRACT

In the present work, the effects of enriching tomatoes with selenium were studied in terms of physiological, metabolic, and molecular processes in the last stages of fruit development, particularly during ripening. A selenium concentration of 10 mg L-1 with sodium selenate and selenium nanoparticles was used in the spray treatments on the whole plants. No significant effects of selenium enrichment were detected in terms of ethylene production or color changes in the ripening fruit. However, selenium enrichment had an influence on both the primary and secondary metabolic processes and thus the biochemical composition of ripe tomatoes. Selenium decreased the amount of ß-carotene, increased the accumulation of naringenin and chlorogenic acid, and decreased the coumaric acid level. Selenium also affected the volatile organic compound profile, with changes in the level of specific apocarotenoid compounds, such as ß-ionone. These metabolomic changes may, to some extent, be due to the impact of selenium treatment on the transcription of genes involved in the metabolism of these compounds. RNA-seq analysis showed that the selenium application mostly impacted the expression of the genes involved in hormonal signaling, secondary metabolism, flavonoid biosynthesis, and glycosaminoglycan degradation.


Subject(s)
Selenium , Solanum lycopersicum , Solanum lycopersicum/genetics , Biofortification , Fruit/genetics , Metabolome
2.
Molecules ; 26(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806831

ABSTRACT

When bushfires occur near grape growing regions, vineyards can be exposed to smoke, and depending on the timing and duration of grapevine smoke exposure, fruit can become tainted. Smoke-derived volatile compounds, including volatile phenols, can impart unpleasant smoky, ashy characters to wines made from smoke-affected grapes, leading to substantial revenue losses where wines are perceivably tainted. This study investigated the potential for post-harvest ozone treatment of smoke-affected grapes to mitigate the intensity of smoke taint in wine. Merlot grapevines were exposed to smoke at ~7 days post-veraison and at harvest grapes were treated with 1 or 3 ppm of gaseous ozone (for 24 or 12 h, respectively), prior to winemaking. The concentrations of smoke taint marker compounds (i.e., free and glycosylated volatile phenols) were measured in grapes and wines to determine to what extent ozonation could mitigate the effects of grapevine exposure to smoke. The 24 h 1 ppm ozone treatment not only gave significantly lower volatile phenol and volatile phenol glycoside concentrations but also diminished the sensory perception of smoke taint in wine. Post-harvest smoke and ozone treatment of grapes suggests that ozone works more effectively when smoke-derived volatile phenols are in their free (aglycone) form, rather than glycosylated forms. Nevertheless, the collective results demonstrate the efficacy of post-harvest ozone treatment as a strategy for mitigation of smoke taint in wine.


Subject(s)
Ozone/chemistry , Phenols/chemistry , Smoke , Vitis , Volatile Organic Compounds/chemistry , Wine
3.
J Sci Food Agric ; 96(2): 664-71, 2016 Jan 30.
Article in English | MEDLINE | ID: mdl-25683953

ABSTRACT

BACKGROUND: Grape juice is an important dietary source of health-promoting antioxidant molecules. Different factors may affect juice composition and nutraceutical properties. The effects of some of these factors (harvest time, pre-processing ethylene treatment of grapes and juice thermal pasteurization) were here evaluated, considering in particular the phenolic composition and antioxidant capacity. RESULTS: Grapes (Vitis vinifera L., red-skinned variety Sangiovese) were collected twice in relation to the technological harvest (TH) and 12 days before TH (early harvest, EH) and treated with gaseous ethylene (1000 ppm) or air for 48 h. Fresh and pasteurized (78 °C for 30 min) juices were produced using a water bath. Three-way analysis of variance showed that the harvest date had the strongest impact on total polyphenols, hydroxycinnamates, flavonols, and especially on total flavonoids. Pre-processing ethylene treatment significantly increased the proanthocyanidin, anthocyanin and flavan-3-ol content in the juices. Pasteurization induced a significant increase in anthocyanin concentration. Antioxidant capacity was enhanced by ethylene treatment and pasteurization in juices from both TH and EH grapes. CONCLUSION: These results suggest that an appropriate management of grape harvesting date, postharvest and processing may lead to an improvement in nutraceutical quality of juices. Further research is needed to study the effect of the investigated factors on juice organoleptic properties.


Subject(s)
Antioxidants/analysis , Beverages/analysis , Fruit/growth & development , Hot Temperature , Phenols/analysis , Vitis , Coumaric Acids/analysis , Dietary Supplements , Ethylenes/pharmacology , Flavonoids/analysis , Food Handling/methods , Pasteurization , Polyphenols/analysis
4.
Food Chem ; 159: 257-66, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24767053

ABSTRACT

Grapes (Vitis vinifera, cv Sangiovese), harvested at standard commercial maturity, were treated for 36 h with ethylene (ET, 1000 ppm) or air (control, CT) before vinification. The composition of the grapes, must and wine was different in the CT and ET samples. In the ET wine, higher concentrations of specific phenol compounds, belonging to the classes of flavonols, anthocyanins, flavan-3-ols, and stilbenes, were detected. ET induced a significant change in the wine aroma profile by increasing free volatile categories such as phenols and fatty acids, and reducing the content of carbonyl compounds and, in particular, of esters. Less pronounced differences between CT and ET wines were observed in terms of glycosidically-bound volatile compounds. The activity of pectin methyl esterase and ß-glucosidase was enhanced in ET-treated berry skins, suggesting that cell wall properties and changes in the hydrolytic activity are effective in modulating the composition of CT and ET wines.


Subject(s)
Ethylenes/pharmacology , Plant Growth Regulators/pharmacology , Vitis/chemistry , Vitis/drug effects , Wine/analysis , Anthocyanins/analysis , Anthocyanins/metabolism , Fruit/chemistry , Fruit/drug effects , Fruit/growth & development , Fruit/metabolism , Phenols/analysis , Phenols/metabolism , Plant Extracts/analysis , Plant Extracts/metabolism , Polyphenols/analysis , Polyphenols/metabolism , Stilbenes/analysis , Stilbenes/metabolism , Vitis/growth & development , Vitis/metabolism
5.
J Agric Food Chem ; 58(13): 8012-20, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20557098

ABSTRACT

Detached wine grapes ( Vitis vinifera cv. 'Trebbiano', white skinned) were treated for 3 days with 30 kPa of CO(2) and then transferred to air for an additional 9 days to partially dehydrate (about 20% weight loss). At the end of the CO(2) treatment on withering berries, total polyphenols and flavonoids were maintained in the skin, but to a more limited extent in the pulp. An induction of the proanthocyanidin synthesis appeared to be one of the responses to the treatment because both (+)-catechin and (-)-epicatechin concentrations increased in the skin. The skin and pulp of the grape berries showed different molecular responses to a high CO(2) treatment. As revealed by microarray hybridizations, 217 and 75 genes appeared differentially expressed in the skin and pulp of treated samples, respectively. Functional categorization and gene enrichment analyses pointed out that epicarp cells undergo more pronounced changes in transcript profiling at the end of the incubation period. Highly represented categories in both tissues were related to protein, stress, transcript, RNA, and hormone (ethylene, ABA) metabolism. Fermentation, CHO metabolism, and redox regulation functional categories were represented only in the skin.


Subject(s)
Carbon Dioxide/pharmacology , Food Preservation , Vitis/chemistry , Vitis/metabolism , Fruit/chemistry , Fruit/drug effects , Fruit/genetics , Fruit/metabolism , Gene Expression/drug effects , Plant Extracts/analysis , Plant Extracts/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Vitis/drug effects , Vitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL