Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Transl Psychiatry ; 14(1): 14, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191622

ABSTRACT

Schizophrenia is a chronic neurodevelopmental disorder with an inflammatory/prooxidant component. N-acetylcysteine (NAC) has been evaluated in schizophrenia as an adjuvant to antipsychotics, but its role as a preventive strategy has not been sufficiently explored. We aimed to evaluate the potential of NAC administration in two-time windows before the onset of symptoms in a schizophrenia-like maternal immune stimulation (MIS) rat model. Pregnant Wistar rats were injected with Poly I:C or Saline on gestational day (GD) 15. Three different preventive approaches were evaluated: 1) NAC treatment during periadolescence in the offspring (from postnatal day [PND] 35 to 49); 2) NAC treatment during pregnancy after MIS challenge until delivery (GD15-21); and 3) NAC treatment throughout all pregnancy (GD1-21). At postnatal day (PND) 70, prepulse inhibition (PPI) and anxiety levels were evaluated. In vivo magnetic resonance (MR) imaging was acquired on PND100 to assess structural changes in gray and white matter, and brain metabolite concentrations. Additionally, inflammation and oxidative stress (IOS) markers were measured ex vivo in selected brain regions. MIS offspring showed behavioral, neuroanatomical, and biochemical alterations. Interestingly, NAC treatment during periadolescence prevented PPI deficits and partially counteracted some biochemical imbalances. Moreover, NAC treatments during pregnancy not only replicated the beneficial outcomes reported by the treatment in periadolescence, but also prevented some neuroanatomical deficits, including reductions in hippocampal and corpus callosum volumes. This study suggests that early reduction of inflammation and prooxidation could help prevent the onset of schizophrenia-like symptoms, supporting the importance of anti-IOS compounds in ameliorating this disorder.


Subject(s)
Acetylcysteine , Schizophrenia , Female , Pregnancy , Rats , Animals , Rats, Wistar , Acetylcysteine/pharmacology , Schizophrenia/drug therapy , Schizophrenia/prevention & control , Poly I-C , Inflammation
2.
Eur Neuropsychopharmacol ; 46: 14-27, 2021 05.
Article in English | MEDLINE | ID: mdl-33735708

ABSTRACT

The likely involvement of inflammation and oxidative stress (IOS) in mental disease has led to advocate anti-oxidant and anti-inflammatory drugs as therapeutic strategies in the treatment of schizophrenia. Since omega-3 fatty acids (ω-3) show anti-inflammatory/neuroprotective properties, we aim to evaluate whether ω-3 treatment during adolescence in the maternal immune stimulation (MIS) animal model of schizophrenia could prevent the brain and behavioural deficits described in adulthood. At gestational day 15, PolyI:C (4 mg/kg) or saline (VH) were injected to pregnant Wistar rats. Male offspring received ω-3 (800 mg/kg) or saline (Sal) daily from postnatal day (PND) 35-49, defining 4 groups: MIS-ω-3; MIS-Sal; VH-ω-3 and VH-Sal. At PND70, rats were submitted to prepulse inhibition test (PPI). FDG-PET and T2-weighted MRI brain studies were performed in adulthood and analyzed by means of SPM12. IOS markers were measured in selected brain areas. MIS-offspring showed a PPI deficit compared with VH-offspring and ω-3 treatment prevented this deficit. Also, ω-3 reduced the brain metabolism in the deep mesencephalic area and prevented the volumetric abnormalities in the hippocampus but not in the ventricles in MIS-offspring. Besides, ω-3 reduced the expression of iNOS and Keap1 and increased the activity/concentration of HO1, NQO1 and GPX. Our study demonstrates that administration of ω-3 during adolescence prevents PPI behavioural deficits and hippocampal volumetric abnormalities, and partially counteracts IOS deficits via iNOS and Nrf2-ARE pathways in the MIS model. This study highlights the need for novel strategies based on anti-inflammatory/anti-oxidant compounds to alter the disease course in high-risk populations at early stages.


Subject(s)
Fatty Acids, Omega-3 , Prenatal Exposure Delayed Effects , Schizophrenia , Virus Diseases , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants , Disease Models, Animal , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Female , Kelch-Like ECH-Associated Protein 1 , Male , NF-E2-Related Factor 2/therapeutic use , Poly I-C , Pregnancy , Prenatal Exposure Delayed Effects/prevention & control , Rats , Rats, Wistar , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/prevention & control , Virus Diseases/drug therapy
3.
Expert Opin Drug Discov ; 9(5): 567-78, 2014 May.
Article in English | MEDLINE | ID: mdl-24738878

ABSTRACT

INTRODUCTION: Depression is a multifactorial mood disorder with a high prevalence worldwide. Until now, treatments for depression have focused on the inhibition of monoaminergic reuptake sites, which augment the bioavailability of monoamines in the CNS. Advances in drug discovery have widened the therapeutic options with the synthesis of so-called selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine. AREAS COVERED: The aim of this case history is to describe and discuss the pharmacokinetic and pharmacodynamic profiles of fluoxetine, including its acute effects and the adaptive changes induced after long-term treatment. Furthermore, the authors review the effect of fluoxetine on neuroplasticity and adult neurogenesis. In addition, the article summarises the preclinical behavioural data available on fluoxetine's effects on depressive-like behaviour, anxiety and cognition as well as its effects on other diseases. Finally, the article describes the seminal studies validating the antidepressant effects of fluoxetine. EXPERT OPINION: Fluoxetine is the first selective SSRI that has a recognised clinical efficacy and safety profile. Since its discovery, other molecules that mimic its mechanism of action have been developed, commencing a new age in the treatment of depression. Fluoxetine has also demonstrated utility in the treatment of other disorders for which its prescription has now been approved.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Antidepressive Agents, Second-Generation/pharmacokinetics , Drug Discovery/history , Fluoxetine/pharmacology , Fluoxetine/pharmacokinetics , Animals , Antidepressive Agents, Second-Generation/chemistry , Drug Evaluation, Preclinical/history , Fluoxetine/chemistry , History, 20th Century , Humans
4.
Expert Opin Drug Discov ; 7(8): 745-55, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22680253

ABSTRACT

INTRODUCTION: Affective disorders, including major depressive disorder (MDD), are among the most severely disabling mental disorders, and in many cases are associated with poor treatment outcomes. From the emergence of the monoamine hypothesis of depression, the first-line treatment for MDD had mainly acted by inhibiting monoamine reuptake, and thereby increasing these levels in the synaptic cleft. However, in recent years, several new antidepressant drugs have appeared, including duloxetine, a dual serotonin (5-HT) and noradrenaline (NA) reuptake inhibitor recommended for the treatment of MDD. AREAS COVERED: The article reviews and discusses the biochemical and functional profile of duloxetine splitting the review into acute and long-term treatment with this dual monoamine reuptake inhibitor. In addition, the authors summarize available preclinical behavioral research data, which have demonstrated among other effects, the antidepressant-like activity of duloxetine in several animal models. The authors focus on the most recent literature on synaptic neuroplasticity modulation of this antidepressant drug. Finally, the authors briefly mention other approved indications of duloxetine. EXPERT OPINION: Duloxetine inhibits 5-HT and NA reuptake, effectively desensitizes various autoreceptors and promotes neuroplasticity. Clinically, duloxetine is an effective antidepressant that is well tolerated and has significant efficacy in the treatment of MDD.


Subject(s)
Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Thiophenes/pharmacology , Thiophenes/therapeutic use , Animals , Drug Evaluation, Preclinical , Duloxetine Hydrochloride , Humans
SELECTION OF CITATIONS
SEARCH DETAIL