Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37950874

ABSTRACT

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.


Subject(s)
White Matter , Animals , Humans , White Matter/diagnostic imaging , Brain , Corpus Callosum/diagnostic imaging , Corpus Callosum/physiology , Thalamus/diagnostic imaging , Macaca mulatta , Mammals
2.
Hum Brain Mapp ; 44(5): 2039-2049, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36661404

ABSTRACT

Cross-modal plasticity in blind individuals has been reported over the past decades showing that nonvisual information is carried and processed by "visual" brain structures. However, despite multiple efforts, the structural underpinnings of cross-modal plasticity in congenitally blind individuals remain unclear. We mapped thalamocortical connectivity and assessed the integrity of white matter of 10 congenitally blind individuals and 10 sighted controls. We hypothesized an aberrant thalamocortical pattern of connectivity taking place in the absence of visual stimuli from birth as a potential mechanism of cross-modal plasticity. In addition to the impaired microstructure of visual white matter bundles, we observed structural connectivity changes between the thalamus and occipital and temporal cortices. Specifically, the thalamic territory dedicated to connections with the occipital cortex was smaller and displayed weaker connectivity in congenitally blind individuals, whereas those connecting with the temporal cortex showed greater volume and increased connectivity. The abnormal pattern of thalamocortical connectivity included the lateral and medial geniculate nuclei and the pulvinar nucleus. For the first time in humans, a remapping of structural thalamocortical connections involving both unimodal and multimodal thalamic nuclei has been demonstrated, shedding light on the possible mechanisms of cross-modal plasticity in humans. The present findings may help understand the functional adaptations commonly observed in congenitally blind individuals.


Subject(s)
Blindness , Occipital Lobe , Humans , Blindness/diagnostic imaging , Thalamus/diagnostic imaging , Temporal Lobe , Geniculate Bodies
3.
Trends Neurosci ; 45(6): 415-416, 2022 06.
Article in English | MEDLINE | ID: mdl-35428528

ABSTRACT

A recent study by Sampaio-Baptista and colleagues showed that bidirectionally white matter plasticity can be elicited 24 h after a short regime of neurofeedback (NF) training in healthy individuals. The findings reinforce NF as a tool to induce brain plasticity while highlighting it as a promising intervention for clinical populations.


Subject(s)
Neurofeedback , White Matter , Brain , Humans , Magnetic Resonance Imaging , Neuronal Plasticity
4.
Cereb Cortex ; 31(10): 4642-4651, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33999140

ABSTRACT

The corpus callosum (CC), the anterior (AC), and the posterior (PC) commissures are the principal axonal fiber bundle pathways that allow bidirectional communication between the brain hemispheres. Here, we used the Allen mouse brain connectivity atlas and high-resolution diffusion-weighted MRI (DWI) to investigate interhemispheric fiber bundles in C57bl6/J mice, the most commonly used wild-type mouse model in biomedical research. We identified 1) commissural projections from the primary motor area through the AC to the contralateral hemisphere; and 2) intrathalamic interhemispheric fiber bundles from multiple regions in the frontal cortex to the contralateral thalamus. This is the first description of direct interhemispheric corticothalamic connectivity from the orbital cortex. We named these newly identified crossing points thalamic commissures. We also analyzed interhemispheric connectivity in the Balb/c mouse model of dysgenesis of the corpus callosum (CCD). Relative to C57bl6/J, Balb/c presented an atypical and smaller AC and weaker interhemispheric corticothalamic communication. These results redefine our understanding of interhemispheric brain communication. Specifically, they establish the thalamus as a regular hub for interhemispheric connectivity and encourage us to reinterpret brain plasticity in CCD as an altered balance between axonal reinforcement and pruning.


Subject(s)
Cerebral Cortex/physiology , Neural Pathways/physiology , Thalamus/physiology , White Matter/physiology , Animals , Atlases as Topic , Axons/physiology , Diffusion Magnetic Resonance Imaging , Functional Laterality/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Motor Cortex/physiology , Neuronal Plasticity/physiology
5.
PLoS One ; 8(12): e81658, 2013.
Article in English | MEDLINE | ID: mdl-24312569

ABSTRACT

The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.


Subject(s)
Brain-Computer Interfaces , Computer Graphics , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neurofeedback/methods , User-Computer Interface , Adult , Brain Mapping , Emotions , Female , Humans , Male , Middle Aged , Motor Activity , Multivariate Analysis , Support Vector Machine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL