Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515015

ABSTRACT

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Subject(s)
Iron Deficiencies , Iron , Pregnancy , Female , Animals , Rats , Male , Iron/metabolism , Chromatin/genetics , Chromatin/metabolism , Animals, Newborn , Rats, Sprague-Dawley , Epigenesis, Genetic , Choline/pharmacology , Choline/metabolism , Hippocampus
2.
J Nutr ; 154(4): 1141-1152, 2024 04.
Article in English | MEDLINE | ID: mdl-38408730

ABSTRACT

BACKGROUND: Developmental iron deficiency (ID) is associated with long-term cognitive and affective behavioral impairments in humans. Preclinical studies have shown that developmental ID has short- and long-term effects on gene regulation. Prenatal choline supplementation partially rescues early-life ID-induced cognitive deficits in adult male rats. OBJECTIVES: To identify acute and long-term changes in biological processes regulated by developmental ID and modifiable by choline. METHODS: This study compares the hippocampal transcriptomes of postnatal day (P) 15 iron-deficient (acute) and P65 formerly ID (persistent) rats with or without prenatal choline treatment. Pregnant rats were fed an ID (4 mg/kg Fe) or iron-sufficient (IS) (200 mg/kg Fe) diet from gestational day (G) 2 to P7 with or without choline supplementation (5 g/kg choline) from G11 to G18. Hippocampi were collected from P15 or P65 offspring and analyzed for gene expression by RNA sequencing. RESULTS: Developmental ID-induced changes suggested modified activity of oxidative phosphorylation and fatty acid metabolism. Prenatal choline supplementation induced robust changes in gene expression, particularly in iron-deficient animals, where it partially mitigated the early-life ID-dysregulated genes. Choline supplementation also altered the hippocampal transcriptome in the IS rats, with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided global assessments of gene expression regulated by iron and choline. Our new findings highlight genes responding to iron or choline treatments, including a potentially novel choline-regulated transporter (IPO7), with shared effects on neuroinflammation in the male rat hippocampus.


Subject(s)
Iron Deficiencies , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Rats , Animals , Male , Iron/metabolism , Transcriptome , Choline , Animals, Newborn , Rats, Sprague-Dawley , Vitamins/pharmacology , Hippocampus/metabolism
3.
Nutrients ; 15(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36986048

ABSTRACT

BACKGROUND: Fetal-neonatal iron deficiency (ID) causes long-term neurocognitive and affective dysfunctions. Clinical and preclinical studies have shown that early-life ID produces sex-specific effects. However, little is known about the molecular mechanisms underlying these early-life ID-induced sex-specific effects on neural gene regulation. OBJECTIVE: To illustrate sex-specific transcriptome alterations in adult rat hippocampus induced by fetal-neonatal ID and prenatal choline treatment. METHODS: Pregnant rats were fed an iron-deficient (4 mg/kg Fe) or iron-sufficient (200 mg/kg Fe) diet from gestational day (G) 2 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline) from G11-18. Hippocampi were collected from P65 offspring of both sexes and analyzed for changes in gene expression. RESULTS: Both early-life ID and choline treatment induced transcriptional changes in adult female and male rat hippocampi. Both sexes showed ID-induced alterations in gene networks leading to enhanced neuroinflammation. In females, ID-induced changes indicated enhanced activity of oxidative phosphorylation and fatty acid metabolism, which were contrary to the ID effects in males. Prenatal choline supplementation induced the most robust changes in gene expression, particularly in iron-deficient animals where it partially rescued ID-induced dysregulation. Choline supplementation also altered hippocampal transcriptome in iron-sufficient rats with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided unbiased global assessments of gene expression regulated by iron and choline in a sex-specific manner, with greater effects in female than male rats. Our new findings highlight potential sex-specific gene networks regulated by iron and choline for further investigation.


Subject(s)
Iron Deficiencies , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Animals , Rats , Male , Female , Choline/pharmacology , Choline/metabolism , Transcriptome , Animals, Newborn , Rats, Sprague-Dawley , Iron/metabolism , Vitamins/pharmacology , Hippocampus/metabolism , Prenatal Exposure Delayed Effects/metabolism
4.
Nutrients ; 13(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34960080

ABSTRACT

Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Choline/pharmacology , DNA-Binding Proteins/metabolism , Hippocampus/drug effects , Iron Deficiencies , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Choline/administration & dosage , DNA-Binding Proteins/genetics , Dietary Supplements , Epigenesis, Genetic , Female , Hippocampus/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Pregnancy , Prenatal Exposure Delayed Effects , Rats
5.
Nutrients ; 13(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34836113

ABSTRACT

Iron deficiency (ID) anemia is the foremost micronutrient deficiency worldwide, affecting around 40% of pregnant women and young children. ID during the prenatal and early postnatal periods has a pronounced effect on neurodevelopment, resulting in long-term effects such as cognitive impairment and increased risk for neuropsychiatric disorders. Treatment of ID has been complicated as it does not always resolve the long-lasting neurodevelopmental deficits. In animal models, developmental ID results in abnormal hippocampal structure and function associated with dysregulation of genes involved in neurotransmission and synaptic plasticity. Dysregulation of these genes is a likely proximate cause of the life-long deficits that follow developmental ID. However, a direct functional link between iron and gene dysregulation has yet to be elucidated. Iron-dependent epigenetic modifications are one mechanism by which ID could alter gene expression across the lifespan. The jumonji and AT-rich interaction domain-containing (JARID) protein and the Ten-Eleven Translocation (TET) proteins are two families of iron-dependent epigenetic modifiers that play critical roles during neural development by establishing proper gene regulation during critical periods of brain development. Therefore, JARIDs and TETs can contribute to the iron-mediated epigenetic mechanisms by which early-life ID directly causes stable changes in gene regulation across the life span.


Subject(s)
Anemia, Iron-Deficiency/genetics , Epigenesis, Genetic/physiology , Hippocampus/metabolism , Infant Nutritional Physiological Phenomena/genetics , Maternal Nutritional Physiological Phenomena/genetics , Anemia, Iron-Deficiency/complications , Animals , Animals, Newborn , Child Development/physiology , Epigenomics , Female , Hippocampus/growth & development , Humans , Infant , Infant, Newborn , Neurodevelopmental Disorders/genetics , Neurogenesis/physiology , Neuronal Plasticity/physiology , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Synaptic Transmission/physiology
6.
Behav Brain Res ; 336: 40-43, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28811181

ABSTRACT

Early-life iron deficiency is a common nutrient condition worldwide and can result in cognitive impairment in adulthood despite iron treatment. In rodents, prenatal choline supplementation can diminish long-term hippocampal gene dysregulation and neurocognitive deficits caused by iron deficiency. Since fetal iron status is generally unknown in humans, we determined whether postnatal choline supplementation exerts similar beneficial effects. Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (3-6ppm Fe) from gestational day (G) 3 through postnatal day (P) 7, and an iron-sufficient (IS) diet (200ppm Fe) thereafter. Control pups were provided IS diet throughout. Choline (5ppm) was given to half the nursing dams and weanlings in each group from P11-P30. P65 rat cognitive performance was assessed by novel object recognition (NOR). Real-time PCR was performed to validate expression levels of synaptic plasticity genes known to be dysregulated by early-life iron deficiency. Postnatal choline supplementation prevented impairment of NOR memory in formerly iron-deficient (FID) adult rats but impaired NOR memory in IS controls. Gene expression analysis revealed a recovery of 4 out of 10 dysregulated genes compared to 8 of the same 10 genes that we previously demonstrated to recover following prenatal choline supplementation. Recognition memory deficits induced by early-life iron deficiency can be prevented by postnatal choline supplementation and disrupted expression of a subset of synaptic plasticity genes can be ameliorated. The positive response to postnatal choline represents a potential adjunctive therapeutic supplement to treat iron-deficient anemic children in order to spare long-term neurodevelopmental deficits.


Subject(s)
Anemia, Iron-Deficiency/metabolism , Choline/pharmacology , Neurocognitive Disorders/metabolism , Animals , Animals, Newborn , Dietary Supplements , Female , Hippocampus/metabolism , Iron/metabolism , Male , Neuronal Plasticity/physiology , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley
7.
Pediatr Res ; 82(3): 501-508, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28399115

ABSTRACT

BackgroundPhlebotomy-induced anemia (PIA) is common in premature infants and affects neurodevelopment. PIA alters hippocampal metabolism in neonatal mice through tissue hypoxia and iron deficiency. The mammalian target of rapamycin (mTOR) pathway senses the status of critical metabolites (e.g., oxygen, iron), thereby regulating hippocampal growth and function. We determined the effect of PIA and recombinant human erythropoietin (rHuEpo) treatment on mTOR signaling and expression of genes related to mTOR pathway functions.MethodsMice receiving an iron-supplemented diet were phlebotomized from postnatal day (P)3 to a target hematocrit of <25% by P7. Half were maintained at <25% until P14; half received rHuEpo from P7 to increase the hematocrit to 25-28%. Hippocampal phosphorylated to total protein ratios of four key mTOR pathway proteins were measured by western blotting at P14 and compared with non-phlebotomized, non-anemic control mice. mRNA levels of genes regulated by mTOR were measured by quantitative PCR.ResultsPIA suppressed phosphorylation of all mTOR proteins. rHuEpo restored AMP-activated protein kinase (AMPK) and AKT status, and partially rescued the mTOR output protein S6K. PIA and rHuEpo treatment also altered the expression of genes regulated by S6K.ConclusionPIA compromises and rHuEpo treatment partially rescues a pathway regulating neuronal DNA transcription, protein translation, and structural complexity.


Subject(s)
Anemia/drug therapy , Animals, Newborn , Erythropoietin/administration & dosage , Erythropoietin/therapeutic use , Hippocampus/pathology , Phlebotomy/adverse effects , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Anemia/etiology , Animals , Female , Mice , Mice, Inbred C57BL , Pregnancy
8.
J Nutr ; 146(3): 484-93, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26865644

ABSTRACT

BACKGROUND: Early-life iron deficiency is a common nutrient deficiency worldwide. Maternal iron deficiency increases the risk of schizophrenia and autism in the offspring. Postnatal iron deficiency in young children results in cognitive and socioemotional abnormalities in adulthood despite iron treatment. The rat model of diet-induced fetal-neonatal iron deficiency recapitulates the observed neurobehavioral deficits. OBJECTIVES: We sought to establish molecular underpinnings for the persistent psychopathologic effects of early-life iron deficiency by determining whether it permanently reprograms the hippocampal transcriptome. We also assessed the effects of maternal dietary choline supplementation on the offspring's hippocampal transcriptome to identify pathways through which choline mitigates the emergence of long-term cognitive deficits. METHODS: Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (4 g Fe/kg) from gestational day (G) 2 through postnatal day (PND) 7 and an iron-sufficient (IS) diet (200 g Fe/kg) thereafter. Control pups were provided IS diet throughout. Choline (5 g/kg) was given to half the pregnant dams in each group from G11 to G18. PND65 hippocampal transcriptomes were assayed by next generation sequencing (NGS) and analyzed with the use of knowledge-based Ingenuity Pathway Analysis. Real-time polymerase chain reaction was performed to validate a subset of altered genes. RESULTS: Formerly ID rats had altered hippocampal expression of 619 from >10,000 gene loci sequenced by NGS, many of which map onto molecular networks implicated in psychological disorders, including anxiety, autism, and schizophrenia. There were significant interactions between iron status and prenatal choline treatment in influencing gene expression. Choline supplementation reduced the effects of iron deficiency, including those on gene networks associated with autism and schizophrenia. CONCLUSIONS: Fetal-neonatal iron deficiency reprograms molecular networks associated with the pathogenesis of neurologic and psychological disorders in adult rats. The positive response to prenatal choline represents a potential adjunctive therapeutic supplement to the high-risk group.


Subject(s)
Choline/pharmacology , Iron Deficiencies , Prenatal Exposure Delayed Effects , Prenatal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Behavior, Animal/drug effects , Dietary Supplements , Female , Fetus/drug effects , Fetus/metabolism , Gene Expression , Genetic Loci , High-Throughput Nucleotide Sequencing , Hippocampus/drug effects , Hippocampus/metabolism , Male , Pregnancy , Prenatal Care , Rats , Rats, Sprague-Dawley , Reproducibility of Results
9.
Dev Neurosci ; 38(1): 74-82, 2016.
Article in English | MEDLINE | ID: mdl-26820887

ABSTRACT

Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, 3-week-old male rats were subjected to 5 episodes of moderate hypoglycemia (blood glucose concentration, approx. 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-Jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase receptor B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing the prepulse inhibition of the acoustic startle reflex on postnatal day 29 and 2 weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF/TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, the prepulse inhibition had recovered at 2 weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the posthypoglycemic period.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/growth & development , Hippocampus/metabolism , Hypoglycemia/metabolism , Prefrontal Cortex/metabolism , Acoustic Stimulation/methods , Aging , Animals , Fear/physiology , Female , Male , Rats, Sprague-Dawley , Reflex, Startle/drug effects
10.
Am J Physiol Regul Integr Comp Physiol ; 308(4): R276-82, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25519736

ABSTRACT

Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Chromatin Assembly and Disassembly , DNA Methylation , Epigenesis, Genetic , Hippocampus/metabolism , Iron Deficiencies , Iron Metabolism Disorders/genetics , Prenatal Exposure Delayed Effects , Age Factors , Animals , Binding Sites , Brain-Derived Neurotrophic Factor/metabolism , Choline/administration & dosage , Chromatin Assembly and Disassembly/drug effects , DNA Methylation/drug effects , Disease Models, Animal , Down-Regulation , Epigenesis, Genetic/drug effects , Female , Gestational Age , Hippocampus/drug effects , Histone Deacetylase 1/metabolism , Histones/metabolism , Iron/blood , Iron Metabolism Disorders/blood , Iron Metabolism Disorders/complications , Iron Metabolism Disorders/drug therapy , Methylation , Pregnancy , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Rats, Sprague-Dawley , Time Factors , Upstream Stimulatory Factors/metabolism
11.
J Nutr ; 144(11): 1858-65, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25332485

ABSTRACT

BACKGROUND: Gestational iron deficiency in humans and rodents produces long-term deficits in cognitive and socioemotional function and alters expression of plasticity genes in the hippocampus that persist despite iron treatment. Prenatal choline supplementation improves cognitive function in other rodent models of developmental insults. OBJECTIVE: The objective of this study was to determine whether prenatal choline supplementation prevents the long-term effects of fetal-neonatal iron deficiency on cognitive and social behaviors and hippocampal gene expression. METHODS: Pregnant rat dams were administered an iron-deficient (2-6 g/kg iron) or iron-sufficient (IS) (200 g/kg iron) diet from embryonic day (E) 3 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline chloride, E11-18). Novel object recognition (NOR) in the test vs. acquisition phase, social approach (SA), and hippocampal mRNA expression were compared at P65 in 4 male adult offspring groups: formerly iron deficient (FID), FID with choline supplementation (FID-C), IS, and IS with choline supplementation. RESULTS: Relative to the intact NOR in IS rats (acquisition: 47.9%, test: 60.2%, P < 0.005), FID adult rats had impaired recognition memory at the 6-h delay (acquisition: 51.4%, test: 55.1%, NS), accompanied by a 15% reduction in hippocampal expression of brain-derived neurotrophic factor (Bdnf) (P < 0.05) and myelin basic protein (Mbp) (P < 0.05). Prenatal choline supplementation in FID rats restored NOR (acquisition: 48.8%, test: 64.4%, P < 0.0005) and increased hippocampal gene expression (FID-C vs. FID group: Bdnf, Mbp, P < 0.01). SA was also reduced in FID rats (P < 0.05 vs. IS rats) but was only marginally improved by prenatal choline supplementation. CONCLUSIONS: Deficits in recognition memory, but not social behavior, resulting from gestational iron deficiency are attenuated by prenatal choline supplementation, potentially through preservation of hippocampal Bdnf and Mbp expression. Prenatal choline supplementation may be a promising adjunct treatment for fetal-neonatal iron deficiency.


Subject(s)
Choline/pharmacology , Iron Deficiencies , Memory/drug effects , Animals , Animals, Newborn , Choline/administration & dosage , Dietary Supplements , Female , Gene Expression Regulation , Hematocrit , Hippocampus/drug effects , Hippocampus/metabolism , Iron, Dietary , Male , Maternal Nutritional Physiological Phenomena , Pregnancy , Prenatal Exposure Delayed Effects , Rats
12.
J Neurosci ; 27(50): 13624-34, 2007 Dec 12.
Article in English | MEDLINE | ID: mdl-18077674

ABSTRACT

The ventromedial hypothalamus (VMH) is a distinct morphological nucleus involved in feeding, fear, thermoregulation, and sexual activity. It is essentially unknown how VMH circuits underlying these innate responses develop, in part because the VMH remains poorly defined at a cellular and molecular level. Specifically, there is a paucity of cell-type-specific genetic markers with which to identify neuronal subgroups and manipulate development and signaling in vivo. Using gene profiling, we now identify approximately 200 genes highly enriched in neonatal (postnatal day 0) mouse VMH tissue. Analyses of these VMH markers by real or virtual (Allen Brain Atlas; http://www.brain-map.org) experiments revealed distinct regional patterning within the newly formed VMH. Top neonatal markers include transcriptional regulators such as Vgll2, SF-1, Sox14, Satb2, Fezf1, Dax1, Nkx2-2, and COUP-TFII, but interestingly, the highest expressed VMH transcript, the transcriptional coregulator Vgll2, is completely absent in older animals. Collective results from zebrafish knockdown experiments and from cellular studies suggest that a subset of these VMH markers will be important for hypothalamic development and will be downstream of SF-1, a critical factor for normal VMH differentiation. We show that at least one VMH marker, the AT-rich binding protein Satb2, was responsive to the loss of leptin signaling (Lep(ob/ob)) at postnatal day 0 but not in the adult, suggesting that some VMH transcriptional programs might be influenced by fetal or early postnatal environments. Our study describing this comprehensive "VMH transcriptome" provides a novel molecular toolkit to probe further the genetic basis of innate neuroendocrine behavioral responses.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Hypothalamus/metabolism , Age Factors , Animals , Animals, Newborn , Biomarkers/metabolism , Cell Differentiation/genetics , Embryo, Nonmammalian , Homeobox Protein Nkx-2.2 , Hypothalamus/cytology , Hypothalamus/growth & development , Leptin/metabolism , Male , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Mice , Mice, Mutant Strains , Muscle Proteins/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish , Zebrafish Proteins
SELECTION OF CITATIONS
SEARCH DETAIL