Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
PLoS One ; 19(4): e0299493, 2024.
Article in English | MEDLINE | ID: mdl-38625928

ABSTRACT

Though facing significant challenges, coffee (Coffea arabica) grown in Haitian agroforestry systems are important contributors to rural livelihoods and provide several ecosystem services. However, little is known about their genetic diversity and the variety mixtures used. In light of this, there is a need to characterize Haitian coffee diversity to help inform revitalization of this sector. We sampled 28 diverse farms in historically important coffee growing regions of northern and southern Haiti. We performed KASP-genotyping of SNP markers and HiPlex multiplex amplicon sequencing for haplotype calling on our samples, as well as several Ethiopian and commercial accessions from international collections. This allowed us to assign Haitian samples to varietal groups. Our analyses revealed considerable genetic diversity in Haitian farms, higher in fact than many farmers realized. Notably, genetic structure analyses revealed the presence of clusters related to Typica, Bourbon, and Catimor groups, another group that was not represented in our reference accession panel, and several admixed individuals. Across the study areas, we found both mixed-variety farms and monovarietal farms with the historical and traditional Typica variety. This study is, to our knowledge, the first to genetically characterize Haitian C. arabica variety mixtures, and report the limited cultivation of C. canephora (Robusta coffee) in the study area. Our results show that some coffee farms are repositories of historical, widely-abandoned varieties while others are generators of new diversity through genetic mixing.


Subject(s)
Coffea , Coffee , Humans , Haiti , Ecosystem , Coffea/genetics , Genetic Variation
2.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622339

ABSTRACT

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Subject(s)
Coffea , Coffea/genetics , Coffee , Genome, Plant/genetics , Metagenomics , Plant Breeding
3.
Glob Chang Biol ; 28(13): 4124-4142, 2022 07.
Article in English | MEDLINE | ID: mdl-35527235

ABSTRACT

The assessment of population vulnerability under climate change is crucial for planning conservation as well as for ensuring food security. Coffea canephora is, in its native habitat, an understorey tree that is mainly distributed in the lowland rainforests of tropical Africa. Also known as Robusta, its commercial value constitutes a significant revenue for many human populations in tropical countries. Comparing ecological and genomic vulnerabilities within the species' native range can provide valuable insights about habitat loss and the species' adaptive potential, allowing to identify genotypes that may act as a resource for varietal improvement. By applying species distribution models, we assessed ecological vulnerability as the decrease in climatic suitability under future climatic conditions from 492 occurrences. We then quantified genomic vulnerability (or risk of maladaptation) as the allelic composition change required to keep pace with predicted climate change. Genomic vulnerability was estimated from genomic environmental correlations throughout the native range. Suitable habitat was predicted to diminish to half its size by 2050, with populations near coastlines and around the Congo River being the most vulnerable. Whole-genome sequencing revealed 165 candidate SNPs associated with climatic adaptation in C. canephora, which were located in genes involved in plant response to biotic and abiotic stressors. Genomic vulnerability was higher for populations in West Africa and in the region at the border between DRC and Uganda. Despite an overall low correlation between genomic and ecological vulnerability at broad scale, these two components of vulnerability overlap spatially in ways that may become damaging. Genomic vulnerability was estimated to be 23% higher in populations where habitat will be lost in 2050 compared to regions where habitat will remain suitable. These results highlight how ecological and genomic vulnerabilities are relevant when planning on how to cope with climate change regarding an economically important species.


Subject(s)
Coffea , Climate Change , Coffea/genetics , Coffee , Genome, Plant , Genomics , Humans
4.
Plant Mol Biol ; 83(3): 177-89, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23708951

ABSTRACT

Coffee is one of the world's most important agricultural commodities. Coffee belongs to the Rubiaceae family in the euasterid I clade of dicotyledonous plants, to which the Solanaceae family also belongs. Two bacterial artificial chromosome (BAC) libraries of a homozygous doubled haploid plant of Coffea canephora were constructed using two enzymes, HindIII and BstYI. A total of 134,827 high quality BAC-end sequences (BESs) were generated from the 73,728 clones of the two libraries, and 131,412 BESs were conserved for further analysis after elimination of chloroplast and mitochondrial sequences. This corresponded to almost 13 % of the estimated size of the C. canephora genome. 6.7 % of BESs contained simple sequence repeats, the most abundant (47.8 %) being mononucleotide motifs. These sequences allow the development of numerous useful marker sites. Potential transposable elements (TEs) represented 11.9 % of the full length BESs. A difference was observed between the BstYI and HindIII libraries (14.9 vs. 8.8 %). Analysis of BESs against known coding sequences of TEs indicated that 11.9 % of the genome corresponded to known repeat sequences, like for other flowering plants. The number of genes in the coffee genome was estimated at 41,973 which is probably overestimated. Comparative genome mapping revealed that microsynteny was higher between coffee and grapevine than between coffee and tomato or Arabidopsis. BESs constitute valuable resources for the first genome wide survey of coffee and provide new insights into the composition and evolution of the coffee genome.


Subject(s)
Chromosomes, Artificial, Bacterial , Coffee/genetics , Evolution, Molecular , Genome, Plant , DNA, Plant/genetics , Microsatellite Repeats
5.
BMC Genomics ; 13: 103, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22433423

ABSTRACT

BACKGROUND: Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. RESULTS: Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. CONCLUSIONS: These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time factor alone does not explain divergences. Our results are considerably useful for syntenic studies between supposedly remote species for the isolation of important genes for agronomy.


Subject(s)
Magnoliopsida/genetics , Phylogeny , Synteny , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , Cloning, Molecular , Coffea/genetics , Computational Biology , Evolution, Molecular , Genetic Loci/genetics , Genome, Plant/genetics , Solanum/genetics , Vitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL