Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 15(1): 2762, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553447

ABSTRACT

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.


Subject(s)
Galanin , Vibrissae , Animals , Humans , Mice , Axons/metabolism , Brain/metabolism , Galanin/metabolism , Thalamus/metabolism , Vibrissae/physiology
2.
Proc Natl Acad Sci U S A ; 119(16): e2200476119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412887

ABSTRACT

Augmentor α and ß (Augα and Augß) are newly discovered ligands of the receptor tyrosine kinases Alk and Ltk. Augα functions as a dimeric ligand that binds with high affinity and specificity to Alk and Ltk. However, a monomeric Augα fragment and monomeric Augß also bind to Alk and potently stimulate cellular responses. While previous studies demonstrated that oncogenic Alk mutants function as important drivers of a variety of human cancers, the physiological roles of Augα and Augß are poorly understood. Here, we investigate the physiological roles of Augα and Augß by exploring mice deficient in each or both Aug ligands. Analysis of mutant mice showed that both Augα single knockout and double knockout of Augα and Augß exhibit a similar thinness phenotype and resistance to diet-induced obesity. In the Augα-knockout mice, the leanness phenotype is coupled to increased physical activity. By contrast, Augß-knockout mice showed similar weight curves as the littermate controls. Experiments are presented demonstrating that Augα is robustly expressed and metabolically regulated in agouti-related peptide (AgRP) neurons, cells that control whole-body energy homeostasis in part via their projections to the paraventricular nucleus (PVN). Moreover, both Alk and melanocortin receptor-4 are expressed in discrete neuronal populations in the PVN and are regulated by projections containing Augα and AgRP, respectively, demonstrating that two distinct mechanisms that regulate pigmentation operate in the hypothalamus to control body weight. These experiments show that Alk-driven cancers were co-opted from a neuronal pathway in control of body weight, offering therapeutic opportunities for metabolic diseases and cancer.


Subject(s)
Anaplastic Lymphoma Kinase , Body Weight , Cytokines , Hypothalamus , Animals , Mice , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Cytokines/genetics , Cytokines/metabolism , Hypothalamus/metabolism , Ligands , Metabolic Networks and Pathways , Mice, Knockout , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Thinness/genetics
3.
Nature ; 582(7811): 246-252, 2020 06.
Article in English | MEDLINE | ID: mdl-32499648

ABSTRACT

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.


Subject(s)
Gene Expression Regulation, Developmental , Hypothalamus/cytology , Hypothalamus/embryology , Morphogenesis , Animals , Cell Differentiation , Cell Lineage , Dopamine/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Female , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Gene Regulatory Networks , Genome-Wide Association Study , Glutamic Acid/metabolism , Hypothalamus/metabolism , Male , Mice , Morphogenesis/genetics , Nerve Tissue Proteins/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Receptors, Immunologic/metabolism , Regulon/genetics , Signal Transduction , Transcription Factors/metabolism , gamma-Aminobutyric Acid/metabolism , Roundabout Proteins
SELECTION OF CITATIONS
SEARCH DETAIL