Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Rev Neurosci ; 24(8): 502-517, 2023 08.
Article in English | MEDLINE | ID: mdl-37316588

ABSTRACT

There has been considerable speculation regarding the function of the dentate gyrus (DG) - a subregion of the mammalian hippocampus - in learning and memory. In this Perspective article, we compare leading theories of DG function. We note that these theories all critically rely on the generation of distinct patterns of activity in the region to signal differences between experiences and to reduce interference between memories. However, these theories are divided by the roles they attribute to the DG during learning and recall and by the contributions they ascribe to specific inputs or cell types within the DG. These differences influence the information that the DG is thought to impart to downstream structures. We work towards a holistic view of the role of DG in learning and memory by first developing three critical questions to foster a dialogue between the leading theories. We then evaluate the extent to which previous studies address our questions, highlight remaining areas of conflict, and suggest future experiments to bridge these theories.


Subject(s)
Dentate Gyrus , Hippocampus , Animals , Humans , Mental Recall , Learning , Mammals
2.
Biomacromolecules ; 14(10): 3523-31, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-24004278

ABSTRACT

Nanoparticles were prepared by ionotropic gelation of low-methoxylated (LM) and amidated low-methoxylated (AM) pectin with zinc chloride (ZnCl2) in aqueous media. The samples were characterized by atomic force microscopy, dynamic light scattering, turbidimetry, zeta potential, and pH measurements. Pectin nanoparticles could be prepared at a pectin concentration of 0.07% (w/w) and a ZnCl2-to-pectin ratio of 15:85 (w/w) in the presence of sodium chloride, but not in pure water. Interestingly, particles in the nanometer size-range could also be prepared in the absence of the cross-linker ZnCl2. The dynamic light scattering studies revealed that the AM-pectin nanoparticles were much less polydisperse than the LM-pectin nanoparticles. The AM-pectin nanoparticles were therefore considered to be more promising as a potential drug delivery system, and further studies were performed to investigate the colloidal stability and the effect of the pectin concentration on the size, charge, and compactness of these nanoparticles.


Subject(s)
Chlorides/chemistry , Cross-Linking Reagents/chemical synthesis , Nanoparticles/chemistry , Pectins/chemical synthesis , Sodium/chemistry , Zinc/chemistry , Cations/chemistry , Cross-Linking Reagents/chemistry , Hydrogen-Ion Concentration , Ions/chemical synthesis , Ions/chemistry , Particle Size , Pectins/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL