Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Negl Trop Dis ; 13(1): e0007108, 2019 01.
Article in English | MEDLINE | ID: mdl-30653499

ABSTRACT

BACKGROUND: The human filarial parasite Onchocerca volvulus is the causative agent of onchocerciasis (river blindness). It causes blindness in 270,000 individuals with an additional 6.5 million suffering from severe skin pathologies. Current international control programs focus on the reduction of microfilaridermia by annually administering ivermectin for more than 20 years with the ultimate goal of blocking of transmission. The adult worms of O. volvulus can live within nodules for over 15 years and actively release microfilariae for the majority of their lifespan. Therefore, protracted treatment courses of ivermectin are required to block transmission and eventually eliminate the disease. To shorten the time to elimination of this disease, drugs that successfully target macrofilariae (adult parasites) are needed. Unfortunately, there is no small animal model for the infection that could be used for discovery and screening of drugs against adult O. volvulus parasites. Here, we present an in vitro culturing system that supports the growth and development of O. volvulus young adult worms from the third-stage (L3) infective stage. METHODOLOGY/PRINCIPAL FINDINGS: In this study we optimized the culturing system by testing several monolayer cell lines to support worm growth and development. We have shown that the optimized culturing system allows for the growth of the L3 worms to L5 and that the L5 mature into young adult worms. Moreover, these young O. volvulus worms were used in preliminary assays to test putative macrofilaricidal drugs and FDA-approved repurposed drugs. CONCLUSION: The culture system we have established for O. volvulus young adult worms offers a promising new platform to advance drug discovery against the human filarial parasite, O. volvulus and thus supports the continuous pursuit for effective macrofilaricidal drugs. However, this in vitro culturing system will have to be further validated for reproducibility before it can be rolled out as a drug screen for decision making in macrofilaricide drug development programs.


Subject(s)
Drug Evaluation, Preclinical/methods , Filaricides/pharmacology , Onchocerca volvulus/drug effects , Onchocerca volvulus/growth & development , Parasitic Sensitivity Tests/methods , Animals , Female , Male
2.
PLoS Negl Trop Dis ; 12(10): e0006772, 2018 10.
Article in English | MEDLINE | ID: mdl-30296268

ABSTRACT

Parasitic nematodes produce an unusual class of fatty acid and retinol (FAR)-binding proteins that may scavenge host fatty acids and retinoids. Two FARs from Brugia malayi (Bm-FAR-1 and Bm-FAR-2) were expressed as recombinant proteins, and their ligand binding, structural characteristics, and immunogenicities examined. Circular dichroism showed that rBm-FAR-1 and rBm-FAR-2 are similarly rich in α-helix structure. Unexpectedly, however, their lipid binding activities were found to be readily differentiated. Both FARs bound retinol and cis-parinaric acid similarly, but, while rBm-FAR-1 induced a dramatic increase in fluorescence emission and blue shift in peak emission by the fluorophore-tagged fatty acid (dansyl-undecanoic acid), rBm-FAR-2 did not. Recombinant forms of the related proteins from Onchocerca volvulus, rOv-FAR-1 and rOv-FAR-2, were found to be similarly distinguishable. This is the first FAR-2 protein from parasitic nematodes that is being characterized. The relative protein abundance of Bm-FAR-1 was higher than Bm-FAR-2 in the lysates of different developmental stages of B. malayi. Both FAR proteins were targets of strong IgG1, IgG3 and IgE antibody in infected individuals and individuals who were classified as endemic normal or putatively immune. In a B. malayi infection model in gerbils, immunization with rBm-FAR-1 and rBm-FAR-2 formulated in a water-in-oil-emulsion (®Montanide-720) or alum elicited high titers of antigen-specific IgG, but only gerbils immunized with rBm-FAR-1 formulated with the former produced a statistically significant reduction in adult worms (68%) following challenge with B. malayi infective larvae. These results suggest that FAR proteins may play important roles in the survival of filarial nematodes in the host, and represent potential candidates for vaccine development against lymphatic filariasis and related filarial infections.


Subject(s)
Antigens, Helminth/immunology , Brugia malayi/immunology , Fatty Acid-Binding Proteins/immunology , Filariasis/prevention & control , Retinol-Binding Proteins/immunology , Vaccines, Synthetic/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Helminth/blood , Antigens, Helminth/chemistry , Circular Dichroism , Disease Models, Animal , Fatty Acid-Binding Proteins/chemistry , Female , Gerbillinae , Humans , Immunoglobulin E/blood , Immunoglobulin G/blood , Male , Parasite Load , Protein Binding , Protein Structure, Secondary , Retinol-Binding Proteins/chemistry , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/isolation & purification , Vitamin A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL