Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nutrients ; 13(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34836278

ABSTRACT

A half-marathon (HM) is a vigorous high-intensity exercise, which could induce lower extremity musculoskeletal injury risks for recreational runners. They usually consume nonsteroidal anti-inflammatory drugs (NSAIDs) in order to shorten their return to play but ignore the side effects, such as peptic ulcers and renal and vascular disorders. Lactobacillus plantarum PS128 (PS128) could improve inflammation and oxidative stress by modulating the gut microbiota, thus potentially improving muscle damage and recovery. However, few studies have addressed the PS128 exercise capacity recovery 96 h after HM. Thus, this study aimed to investigate the effect of PS128 on exercise capacity and physiological adaptation after HM. A double-blind, randomized, placebo-controlled, counterbalanced, crossover trial was used for the experiment. HM was conducted at the beginning and end of the 4-week nutritional supplement administration. Eight recreational runners took two capsules (3 × 1010 CFU/capsule) of PS128 each morning and evening before meals for 4 weeks as the PS128 treatment (LT), or they took two capsules of placebo for 4 weeks as the placebo treatment (PT). In both treatments, an exercise capacity test (lower extremity muscle strength, anaerobic power, lower extremity explosive force, and aerobic capacity) and blood test (muscle fatigue, muscle damage, oxidative stress, and renal injury) were performed before the administration of the nutritional supplement (baseline), 48 h before HM (pre), and 0 h (0 h post), 3 h (3 h post), 24 h (24 h post), 48 h (48 h post), 72 h (72 h post), and 96 h (96 h post) after HM. There was no significant difference in the total duration of HM between PT and LT, but PT was found to be significantly higher than LT at Stage 4 (15,751-21,000 m) of HM (3394 ± 727 s vs. 2778 ± 551 s, p = 0.02). The lower extremity muscle strength measured using an isokinetic dynamometer in PT was significantly lower than that in LT at 72 h after HM. The lower extremity explosive force from the countermovement jump (CMJ) in PT was significantly decreased compared to 24 h prior. There was no significant difference between anaerobic power and aerobic capacity between the two treatments after HM. After HM, LT had lower muscle damage indices, such as myoglobin (3 h post-PT vs. -LT: 190.6 ± 118 ng/mL vs. 91.7 ± 68.6 ng/mL, p < 0.0001) and creatine phosphokinase (24 h post-PT vs. -LT: 875.8 ± 572.3 IU/L vs. 401 ± 295.7 IU/L, p < 0.0001). Blood urea nitrogen recovered in 24 h (24 h pre- vs. post-LT, p > 0.05) and higher superoxide dismutase was found in LT (96 h post-PT vs. -LT: 0.267 ± 0.088 U/mL vs. 0.462 ± 0.122 U/mL, p < 0.0001). In conclusion, PS128 supplementation was associated with an improvement in muscle damage, renal damage, and oxidative stress caused by HM through microbiota modulation and related metabolites but not in exercise capacity.


Subject(s)
Exercise Tolerance , Gastrointestinal Microbiome/physiology , Lactobacillus plantarum/physiology , Marathon Running/physiology , Adult , Bacteria , Creatine Kinase , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Female , Humans , Inflammation/metabolism , Male , Muscle Fatigue , Oxidative Stress , Running , Young Adult
2.
Nutrients ; 13(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572863

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has increased the already high levels of stress that higher education students experience. Stress influences health behaviors, including those related to dietary behaviors, alcohol, and sleep; yet the effects of stress can be mitigated by resilience. To date, past research studying the connections between dietary behaviors, alcohol misuse, sleep, and resilience commonly investigated singular relationships between two of the constructs. The aim of the current study was to explore the relationships between these constructs in a more holistic manner using mediation and moderation analyses. METHODS: Higher education students from China, Ireland, Malaysia, South Korea, Taiwan, the Netherlands, and the United States were enrolled in a cross-sectional study from April to May 2020, which was during the beginning of the COVID-19 pandemic for most participants. An online survey, using validated tools, was distributed to assess perceived stress, dietary behaviors, alcohol misuse, sleep quality and duration, and resilience. RESULTS: 2254 students completed the study. Results indicated that sleep quality mediated the relationship between perceived stress and dietary behaviors as well as the relationship between perceived stress and alcohol misuse. Further, increased resilience reduced the strength of the relationship between perceived stress and dietary behaviors but not alcohol misuse. CONCLUSION: Based on these results, higher education students are likely to benefit from sleep education and resilience training, especially during stressful events.


Subject(s)
Alcoholism , COVID-19/epidemiology , Diet , SARS-CoV-2 , Sleep , Stress, Physiological , Adolescent , Adult , Asia/epidemiology , COVID-19/prevention & control , Europe/epidemiology , Feeding Behavior , Female , Global Health , Humans , Male , North America/epidemiology , Resilience, Psychological , Students , Universities , Young Adult
3.
Nutrition ; 53: 34-37, 2018 09.
Article in English | MEDLINE | ID: mdl-29631106

ABSTRACT

OBJECTIVE: The aim of the present study was to examine cerebral oxygenation during high-intensity exercise in elite basketball players who consumed supplements with different whey protein contents after a short postexercise recovery to determine whether changing whey protein content in carbohydrate-based supplementation influences cerebral hemodynamic response when the supplement was consumed during a 2-h recovery after a 1-h exercise challenge. METHODS: This was a randomized, counterbalanced crossover study. Fifteen Division 1 collegiate basketball players (18-20 y) consumed 6.25 kcal/kg of either high-protein (36% protein in total calorie) or an isocaloric low-protein (12% protein in total calorie) control supplement in a carbohydrate-based drink immediately after a 1-h cycling (70% of maximal oxygen consumption [VO2max]). After a 2-h rest, the athletes were challenged on a cycloergometer at 80% VO2max. Blood perfusion (total hemoglobin) and oxygen saturation of frontal brain were continuously measured by near-infrared spectroscopy during the cycling. RESULTS: Before the cycloergometer test, high-protein supplementation increased peak insulin response and lowered glucose increases during the recovery compared with the low-protein trial. High-protein supplementation enhanced increases in cerebral oxygen saturation (P < 0.01) and attenuated increases in cerebral blood perfusion (total hemoglobin; P < 0.01) during the cycloergometer exercise; and resulted in a 16% longer cycling time (from 474 ± 49 s to 553 ± 78 s, P < 0.05), compared with the low-protein trial. CONCLUSION: Enhanced fatigue recovery after consumption of a high-protein supplement is associated with enhanced cerebral oxygenation against exercise challenge, which spares brain blood demand for periphery.


Subject(s)
Athletes/statistics & numerical data , Brain/metabolism , Dietary Supplements , Exercise Test/methods , Oxygen Consumption/drug effects , Whey Proteins/pharmacology , Adolescent , Adult , Athletic Performance/statistics & numerical data , Basketball , Bicycling , Cross-Over Studies , Exercise/physiology , Humans , Japan , Spectroscopy, Near-Infrared , Young Adult
4.
Am J Chin Med ; 45(7): 1421-1439, 2017.
Article in English | MEDLINE | ID: mdl-28946769

ABSTRACT

Magnolol, a constituent of the bark of Magnolia officinalis, has been reported to decrease myocardial stunning and infarct size. In this study, we investigated whether magnolol can reduce renal ischemia and reperfusion (I/R) injury. Renal I/R, induced by a 60-min occlusion of bilateral renal arteries and a 24-h reperfusion, significantly increased blood urea nitrogen (BUN) and creatinine levels, and caused histological damage to the kidneys of rats. Apoptosis, as evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and caspase-3 activation, was significantly increased in the kidneys. Furthermore, serum levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) were significantly elevated, while the interleukin-10 (IL-10) level was suppressed. However, intravenous pretreatment with magnolol at doses of 0.003[Formula: see text]mg/kg and 0.006[Formula: see text]mg/kg 10[Formula: see text]min before renal I/R significantly limited the increases of BUN, creatinine, the histological damage, and apoptosis in the kidneys. The increases in TNF-[Formula: see text], IL-1ß, and IL-6, and the decrease in IL-10 were also significantly inhibited. Additionally, magnolol increased Bcl-2 and decreased Bax in the kidneys. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was elevated, while phosphorylation of the pro-apoptotic mitogen-activated protein kinases, including p38 and c-Jun N-terminal kinase (JNK), was suppressed. In conclusion, magnolol reduces renal I/R injury. The underlying mechanisms for this effect might be related to the prevention of apoptosis, possibly via the inhibition of both extrinsic and intrinsic apoptotic pathways, including the reduction of TNF-[Formula: see text] production and the modulation of pro- and anti-apoptotic signaling elements.


Subject(s)
Apoptosis/drug effects , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/pharmacology , Ischemia/drug therapy , Kidney/blood supply , Kidney/pathology , Lignans/administration & dosage , Lignans/pharmacology , Phytotherapy , Reperfusion Injury/drug therapy , Animals , Blood Urea Nitrogen , Creatinine/blood , Dose-Response Relationship, Drug , Infusions, Intravenous , Interleukin-10/blood , Interleukin-1beta/blood , Interleukin-6/blood , Ischemia/blood , JNK Mitogen-Activated Protein Kinases/metabolism , Kidney/metabolism , Male , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/blood , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/blood , bcl-2-Associated X Protein/metabolism
5.
Am J Chin Med ; 45(4): 791-811, 2017.
Article in English | MEDLINE | ID: mdl-28521514

ABSTRACT

Baicalein is an active component of Scutellaria baicalensis Georgi, which has traditionally been used to treat cardiovascular diseases in China. In this study, we investigated if treatment with baicalein can attenuate the lung injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R, induced by a 40-min occlusion of the left anterior descending coronary artery and a 3-h reperfusion, significantly increased histological damage and the wet-to-dry weight ratio of lungs in rats. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive nuclei and caspase-3 activation was significantly increased in the lungs. Serum and bronchoalveolar lavage fluid levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as were TNF-[Formula: see text] levels in the lung. Intravenous administration with baicalein at doses of 3, 10, and 30[Formula: see text]mg/kg for ten minutes before myocardial I/R significantly reduced histological damage, the wet-to-dry weight ratio, and apoptosis in the lung. Baicalein also significantly inhibited the increase in levels of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6. Moreover, baicalein increased Bcl-2 and decreased p53, Bax, and cytochrome [Formula: see text] in lungs. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was increased, while the phosphorylation of the pro-apoptotic mitogen-activated protein kinases, including p38 and c-Jun N-terminal kinase (JNK), was decreased. In conclusion, treatment with baicalein attenuates the lung injury induced by myocardial I/R. The mechanisms might be related to the limiting of apoptosis, possibly via the inhibition of both the extrinsic and intrinsic pathways of apoptosis, including the inhibition of TNF-[Formula: see text] production and modulation of pro- and anti-apoptotic signaling elements.


Subject(s)
Apoptosis/drug effects , Flavanones/therapeutic use , Lung Diseases/drug therapy , Lung Diseases/etiology , Myocardial Ischemia/complications , Myocardial Reperfusion/adverse effects , Phytotherapy , Scutellaria baicalensis/chemistry , Animals , Apoptosis/genetics , Caspase 3/metabolism , Cytokines/metabolism , DNA Nucleotidylexotransferase/metabolism , Deoxyuracil Nucleotides/metabolism , Flavanones/administration & dosage , Flavanones/isolation & purification , Infusions, Intravenous , Lung/metabolism , Lung Diseases/metabolism , Lung Diseases/prevention & control , Male , Rats, Sprague-Dawley
6.
Am J Chin Med ; 44(3): 531-50, 2016.
Article in English | MEDLINE | ID: mdl-27109160

ABSTRACT

Baicalein is a component of the root of Scutellaria baicalensis Georgi, which has traditionally been used to treat liver disease in China. In the present study, we investigated baicalein' ability to reduce the liver injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R was induced in this experiment by a 40[Formula: see text]min occlusion of the left anterior descending coronary artery and a 3[Formula: see text]h reperfusion in rats. The induced myocardial I/R significantly increased the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), indicating the presence of liver injury. Hepatic apoptosis was significantly increased. The serum levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as was the TNF-[Formula: see text] level in the liver. Intravenous pretreatment with baicalein (3, 10, or 30[Formula: see text]mg/kg) 10[Formula: see text]min before myocardial I/R significantly reduced the serum level increase of AST and ALT, apoptosis in the liver, and the elevation of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6 levels. Moreover, baicalein increased Bcl-2 and decreased Bax in the liver. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was also increased. In conclusion, we found that baicalein can reduce the liver injury induced by myocardial I/R. The underlying mechanisms are likely related to the inhibition of the extrinsic and intrinsic apoptotic pathways, possibly via the inhibition of TNF-[Formula: see text] production, the modulation of Bcl-2 and Bax, and the activation of Akt and ERK1/2. Our findings may provide a rationale for the application of baicalein or traditional Chinese medicine containing large amounts of baicalein to prevent liver injury in acute myocardial infarction and cardiac surgery.


Subject(s)
Flavanones/therapeutic use , Liver Diseases/drug therapy , Liver Diseases/etiology , Myocardial Ischemia/complications , Myocardial Reperfusion Injury/complications , Phytotherapy , Alanine Transaminase/blood , Animals , Apoptosis , Aspartate Aminotransferases/blood , Biomarkers/blood , Disease Models, Animal , Flavanones/administration & dosage , Flavanones/isolation & purification , Flavanones/pharmacology , Infusions, Intravenous , Interleukin-1beta/blood , Interleukin-6/blood , Liver Diseases/diagnosis , Liver Diseases/pathology , Male , Mitogen-Activated Protein Kinase 3 , Plant Extracts/chemistry , Proto-Oncogene Proteins c-bcl-2 , Rats, Sprague-Dawley , Scutellaria baicalensis , Tumor Necrosis Factor-alpha/blood
7.
Planta Med ; 82(3): 181-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26550790

ABSTRACT

Acute kidney injury is a common and severe complication of acute myocardial infarction and cardiac surgery. It results in increased mortality, morbidity, and duration of hospitalization. Baicalein is a component of the root of Scutellaria baicalensis, which has traditionally been used to treat cardiovascular and liver diseases in Asia. In this study, we investigated whether baicalein can attenuate kidney injury induced by myocardial ischemia and reperfusion in rats. Myocardial ischemia and reperfusion, induced by a 40-minute occlusion and a 3-hour reperfusion of the left anterior descending coronary artery, significantly increased blood urea nitrogen and creatinine levels in addition to causing histological changes in the kidneys. Kidney apoptosis was also significantly increased. Furthermore, myocardial ischemia and reperfusion significantly increased the serum levels of tumor necrosis factor-α, interleukin-1, and interleukin-6 as well as the tumor necrosis factor-α levels in the kidneys. Intravenous pretreatment with baicalein (in doses of 3, 10, or 30 mg/kg), however, significantly reduced the increases in the creatinine level, renal histological damage, and apoptosis induced by myocardial ischemia and reperfusion. In addition, the increases in the serum levels of tumor necrosis factor-α, interleukin-1, and interleukin-6, and of tumor necrosis factor-α in the kidneys were significantly reduced. Western blot analysis revealed that baicalein significantly increased Bcl-2 and reduced Bax in the kidneys. The phosphorylation of Akt and extracellular signal-regulated kinases 1 and 2 was also significantly increased. In conclusion, baicalein significantly attenuates kidney injury induced by myocardial ischemia and reperfusion. The underlying mechanisms might be related to the inhibition of apoptosis, possibly through the reduction of tumor necrosis factor-α production, the modulation of Bcl-2 and Bax, and the activation of Akt and extracellular signal-regulated kinases 1 and 2.


Subject(s)
Acute Kidney Injury/prevention & control , Flavanones/therapeutic use , Myocardial Reperfusion Injury/prevention & control , Plant Extracts/therapeutic use , Scutellaria baicalensis/chemistry , Animals , Apoptosis/drug effects , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL