Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Oleo Sci ; 70(6): 855-859, 2021.
Article in English | MEDLINE | ID: mdl-34078762

ABSTRACT

The leaf of Perilla frutescens (L.) Britton var. frutescens (egoma) is a rich source of polyphenolic compounds, including rosmarinic acid. However, there is still a lack of detailed information concerning the content of phenolic compounds in these leaves. Since some flavonoids were found as a conjugated form, leaves were used untreated or hydrolyzed using ß-glucuronidase for analysis. Enzymatic hydrolysis method successfully identified some polyphenols, which have not been reported before. Scutellarin, a flavone glucuronide with a molecular mass similar to that of luteolin 7-O-glucuronide, was present in egoma leaves. Scutellarin was the second most abundant polyphenolic compound, after rosmarinic acid. Egoma leaves at the top of the plant contained a higher amount of rosmarinic acid and scutellarin compared to that in the leaves below. The difference in plant growth stage also influenced the rosmarinic acid and scutellarin contents, while the time of harvesting during the day did rosmarinic acid contents only. This is the first time that scutellarin, a traditional Chinese medicine, widely used for the treatment of cerebrovascular disease, was quantitatively determined in egoma leaves. The present study may help adding value to egoma leaves, developing dietary supplements, functional foods, and cosmetics.


Subject(s)
Perilla frutescens/chemistry , Plant Leaves/chemistry , Polyphenols/analysis , Apigenin/analysis , Apigenin/isolation & purification , Apigenin/metabolism , Cinnamates/analysis , Cinnamates/isolation & purification , Cinnamates/metabolism , Depsides/analysis , Depsides/isolation & purification , Depsides/metabolism , Glucuronates/analysis , Glucuronates/isolation & purification , Glucuronates/metabolism , Perilla frutescens/growth & development , Perilla frutescens/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Polyphenols/isolation & purification , Polyphenols/metabolism , Time Factors , Rosmarinic Acid
2.
J Agric Food Chem ; 68(51): 15199-15207, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33306387

ABSTRACT

Asparagus (Asparagus officinalis L.) is one of the widely consumed vegetables. To investigate the mechanism underlying the anti-allergic responses of asparagus, we extracted different fractions from asparagus and measured their inhibitory effects on ß-hexosaminidase release in RBL-2H3 cells in vitro and an atopic dermatitis NC/Nga mouse model in vivo. The lipid fractions from asparagus were extracted with 50% ethanol, separated using chloroform by liquid-liquid phase separation, and fractionated by solid-phase extraction. Among them, acetone fraction (rich in glycolipid) and MeOH fraction (rich in phospholipid) markedly inhibited ß-hexosaminidase release from RBL-2H3 cells. In NC/Nga mice treated with picryl chloride, atopic dermatitis was alleviated following exposure to the 50% EtOH extract, acetone fraction, and methanol fraction. The inhibitory effects of asparagus fractions in vivo were supported by the significant decrease in serum immunoglobulin E (IgE) levels. The phospholipid fractions showed significantly better inhibitory effects, and phosphatidic acid from this fraction showed the best inhibitory effect on ß-hexosaminidase release. In mice challenged with ovalbumin (OVA), oral administration of asparagus extract and its fractions decreased the OVA-specific IgE level and total IgE, indicating that these effects may be partly mediated through the downregulation of antigen-specific IgE production. Taken together, the present study shows for the first time that asparagus extract and its lipid fractions could potentially mitigate allergic reactions by decreasing degranulation in granulocytes. Our study provides useful information to develop nutraceuticals and functional foods fortified with asparagus.


Subject(s)
Anti-Allergic Agents/administration & dosage , Asparagus Plant/chemistry , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Phospholipids/administration & dosage , Plant Extracts/administration & dosage , Animals , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/isolation & purification , Female , Granulocytes/drug effects , Granulocytes/immunology , Hexosaminidases/immunology , Humans , Immunoglobulin E/immunology , Mice, Inbred BALB C , Phospholipids/chemistry , Phospholipids/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification
3.
Arch Biochem Biophys ; 691: 108486, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32710880

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease in industrialized countries. Because hepatic steatosis is an early pathogenesis of NAFLD, the discovery of food components that could ameliorate hepatic steatosis is of interest. Susabinori (Pyropia yezoensis) is recognized as one of the most delicious edible brown algae, and we prepared lipid component of susabinori (SNL), which is rich in eicosapentaenoic acid (EPA)-containing polar lipids. In this study, we tested whether feeding SNL to db/db mice protects them from developing obesity-induced hepatic steatosis. After four weeks of feeding, hepatomegaly, hepatic steatosis, and hepatic injury were markedly alleviated in SNL-fed db/db mice. These effects were partly attributable to the suppression of activities and mRNA expressions of lipogenic enzymes and enhanced levels of adiponectin due to the SNL diet. Additionally, mRNA expression of monocyte chemoattractant protein-1, an inflammatory chemokine, was markedly suppressed, and the mRNA levels of PPARδ, the anti-inflammatory transcription factor, were strongly enhanced in the livers of db/db mice by the SNL diet. We speculate that the development and progression of obesity-induced hepatic steatosis was prevented by the suppression of chronic inflammation due to the combination of bioactivities of EPA, phospholipids, and glycolipids in the SNL diet.


Subject(s)
Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Non-alcoholic Fatty Liver Disease/prevention & control , Plant Extracts/pharmacology , Seaweed/chemistry , Animals , Chemokine CCL2/metabolism , Glycolipids/pharmacology , Hepatomegaly/metabolism , Hepatomegaly/prevention & control , Lipogenesis/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , PPAR delta/metabolism , Phospholipids/pharmacology , RNA, Messenger/metabolism , Rhodophyta/chemistry
4.
Biosci Biotechnol Biochem ; 76(3): 462-6, 2012.
Article in English | MEDLINE | ID: mdl-22451385

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease in industrialized countries. The discovery of food components that would ameliorate NAFLD is therefore of interest. Lotus root, the edible rhizome of Nelumbo nucifera, contains a high level of polyphenolic compounds, and several health-promoting properties of lotus root have been reported. The present study examines whether dietary lotus root powder can protect db/db mice from hepatic injury. After 3 weeks of feeding, the hepatomegaly, hepatic triglyceride accumulation, and elevated hepatic injury markers in the serum were markedly alleviated in the Lotus diet-fed db/db mice relative to the control mice. These effects were partly attributable to suppression of the lipogenic enzyme activities and mRNA expression by the Lotus diet. The serum levels of adiponectin, which has been reported to have a protective effect against NAFLD, were significantly higher in the Lotus group than in the Control group of the db/db mice. Moreover, the hepatic expression of such inflammatory genes as tumor necrosis factor-alpha and monocyte chemoattractant protein-1 were markedly suppressed by the Lotus diet. We speculate that the development and progression of NAFLD were prevented by suppressing the expression of lipogenic and inflammatory genes as a result of the higher serum adioponectin level in the Lotus diet-fed db/db mice.


Subject(s)
Diabetes Complications/prevention & control , Fatty Liver/prevention & control , Nelumbo/chemistry , Obesity/complications , Plant Extracts/pharmacology , Rhizome/chemistry , Adiponectin/blood , Animals , Biomarkers/metabolism , Diabetes Complications/metabolism , Diabetes Complications/pathology , Dietary Supplements , Fatty Liver/complications , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Expression Regulation/drug effects , Inflammation/genetics , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Lipogenesis/genetics , Liver/drug effects , Liver/enzymology , Liver/injuries , Liver/metabolism , Male , Mice , Non-alcoholic Fatty Liver Disease , Powders
5.
Lipids Health Dis ; 10: 202, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-22067945

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease of industrialized countries. Thus, discovering food components that can ameliorate NAFLD is of interest. Lotus root, the edible rhizome of Nelumbo nucifera, contains high levels of polyphenolic compounds, and several health-promoting properties of lotus root have been reported. In this study, we tested whether feeding a polyphenolic extract of lotus root to db/db mice protects them from hepatic steatosis. RESULTS: After 3 weeks of feeding, the hepatomegaly and hepatic triglyceride accumulation were markedly alleviated in the lotus polyphenol-diet-fed db/db mice relative to the control mice. Although the lipolytic enzyme activity was not changed, the activities of lipogenic enzymes, such as fatty acid synthase and malic enzyme, were significantly lower in the lotus polyphenol diet-fed db/db mice. Additionally, the ESI-IT/MS and MALDI-TOF MS spectra revealed the presence of B-type proanthocyanidin polymers with polymerization degree up to 9 in the polyphenolic lotus root extract. CONCLUSION: We speculate that the condensed tannins contained in lotus root can alleviate hepatic steatosis by suppressing the lipogenic enzyme activity in the livers of db/db mice.


Subject(s)
Fatty Liver/drug therapy , Nelumbo/chemistry , Plant Extracts/therapeutic use , Plant Roots/chemistry , Polyphenols/therapeutic use , Animals , Carnitine O-Palmitoyltransferase/metabolism , Cholesterol/blood , Cholesterol/metabolism , Fatty Acid Synthases/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Malate Dehydrogenase/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Molecular Structure , Organ Size , Phytotherapy , Plant Extracts/chemistry , Polyphenols/chemistry , Proanthocyanidins/chemistry , Triglycerides/blood , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL